потеря

Потеря регрессии для Гауссовой модели регрессии ядра

Синтаксис

L = loss(Mdl,X,Y)
L = loss(Mdl,X,Y,Name,Value)

Описание

пример

L = loss(Mdl,X,Y) возвращает среднеквадратическую ошибку (MSE) для Гауссовой модели Mdl регрессии ядра с помощью данных о предикторе в X и соответствующих ответов в Y.

пример

L = loss(Mdl,X,Y,Name,Value) дополнительные опции использования заданы одним или несколькими аргументами пары "имя-значение". Например, можно задать функцию потерь регрессии и веса наблюдения. Затем loss возвращает взвешенную потерю регрессии с помощью заданной функции потерь.

Примеры

свернуть все

Обучите Гауссову модель регрессии ядра длинному массиву, затем вычислите среднеквадратическую ошибку перезамены и нечувствительную к эпсилону ошибку.

Создайте datastore, который ссылается на местоположение папки с данными. Данные могут содержаться в одном файле, наборе файлов или целой папке. Обработайте значения 'NA' как недостающие данные так, чтобы datastore заменил их на значения NaN. Выберите подмножество переменных, чтобы использовать. Составьте длинную таблицу сверху datastore.

varnames = {'ArrTime','DepTime','ActualElapsedTime'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
    'SelectedVariableNames',varnames);
t = tall(ds);
Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.

Задайте DepTime и ArrTime как переменные прогноза (X) и ActualElapsedTime как переменная отклика (Y). Выберите наблюдения, для которых ArrTime позже, чем DepTime.

daytime = t.ArrTime>t.DepTime;
Y = t.ActualElapsedTime(daytime);     % Response data
X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data

Стандартизируйте переменные прогноза.

Z = zscore(X); % Standardize the data

Обучите Гауссову модель регрессии ядра по умолчанию со стандартизированными предикторами. Установите 'Verbose',0 подавлять диагностические сообщения.

[Mdl,FitInfo] = fitrkernel(Z,Y,'Verbose',0)
Mdl = 
  RegressionKernel
            PredictorNames: {'x1'  'x2'}
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 64
               KernelScale: 1
                    Lambda: 8.5385e-06
             BoxConstraint: 1
                   Epsilon: 5.9303


  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-tall'
            LossFunction: 'epsiloninsensitive'
                  Lambda: 8.5385e-06
           BetaTolerance: 1.0000e-03
       GradientTolerance: 1.0000e-05
          ObjectiveValue: 31.2279
       GradientMagnitude: 0.0182
    RelativeChangeInBeta: 0.0465
                 FitTime: 68.4420
                 History: []

Mdl является обученной моделью RegressionKernel и массивом структур, FitInfo содержит детали оптимизации.

Определите, как хорошо обученная модель делает вывод к новым значениям предиктора путем оценки среднеквадратической ошибки перезамены и нечувствительной к эпсилону ошибки.

lossMSE = loss(Mdl,Z,Y) % Resubstitution mean squared error
lossMSE =

  M×N×... tall array

    ?    ?    ?    ...
    ?    ?    ?    ...
    ?    ?    ?    ...
    :    :    :
    :    :    :

Preview deferred. Learn more.
lossEI = loss(Mdl,Z,Y,'LossFun','epsiloninsensitive') % Resubstitution epsilon-insensitive error
lossEI =

  M×N×... tall array

    ?    ?    ?    ...
    ?    ?    ?    ...
    ?    ?    ?    ...
    :    :    :
    :    :    :

Preview deferred. Learn more.

Оцените длинные массивы и загрузите результаты в память при помощи gather.

[lossMSE,lossEI] = gather(lossMSE,lossEI)
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2 sec
Evaluation completed in 2.4 sec
lossMSE = 2.8508e+03
lossEI = 28.1095

Задайте пользовательскую потерю регрессии (утрата Хубера) для Гауссовой модели регрессии ядра.

Загрузите набор данных carbig.

load carbig

Задайте переменные прогноза (X) и переменная отклика (Y).

X = [Weight,Cylinders,Horsepower,Model_Year];
Y = MPG;

Удалите строки X и Y, где любой массив имеет значения NaN. При удалении строк со значениями NaN, прежде чем передающие данные к fitrkernel могут ускорить обучение и уменьшать использование памяти.

R = rmmissing([X Y]); 
X = R(:,1:4); 
Y = R(:,end); 

Зарезервируйте 10% наблюдений как выборка затяжки. Извлеките обучение и протестируйте индексы из определения раздела.

rng(10)  % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Стандартизируйте данные тренировки и обучите модель ядра регрессии.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
Mdl = fitrkernel(Ztrain,Ytrain)
Mdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 128
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1
                   Epsilon: 0.8617


  Properties, Methods

Mdl является моделью RegressionKernel.

Создайте анонимную функцию, которая измеряет утрату Хубера (δ=1), то есть,

L=1wjj=1nwjj,

где

j={0.5ejˆ2;|ejˆ|-0.5;|ejˆ|1|ejˆ|>1.

ejˆ невязка для наблюдения j. Пользовательские функции потерь должны быть написаны в конкретной форме. Для правил о записи пользовательской функции потерь смотрите аргумент пары "имя-значение" 'LossFun'.

huberloss = @(Y,Yhat,W)sum(W.*((0.5*(abs(Y-Yhat)<=1).*(Y-Yhat).^2) + ...
    ((abs(Y-Yhat)>1).*abs(Y-Yhat)-0.5)))/sum(W);

Оцените потерю регрессии набора обучающих данных с помощью функции потерь Хубера.

eTrain = loss(Mdl,Ztrain,Ytrain,'LossFun',huberloss)
eTrain = 1.7210

Стандартизируйте тестовые данные с помощью того же среднего и стандартного отклонения столбцов данных тренировки. Оцените потерю регрессии набора тестов с помощью функции потерь Хубера.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

eTest = loss(Mdl,Ztest,Ytest,'LossFun',huberloss)
eTest = 1.3062

Входные параметры

свернуть все

Модель регрессии ядра, заданная как объект модели RegressionKernel. Можно создать объект модели RegressionKernel с помощью fitrkernel.

Данные о предикторе, заданные как n-by-p числовая матрица, где n является количеством наблюдений и p, являются количеством предикторов. p должен быть равен количеству предикторов, используемых, чтобы обучить Mdl.

Типы данных: single | double

Данные об ответе, заданные как n - размерный числовой вектор. Длина Y и количество наблюдений в X должны быть равными.

Типы данных: single | double

Аргументы в виде пар имя-значение

Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: L = loss(Mdl,X,Y,'LossFun','epsiloninsensitive','Weights',weights) возвращает взвешенную потерю регрессии с помощью нечувствительной к эпсилону функции потерь.

Функция потерь, заданная как пара, разделенная запятой, состоящая из 'LossFun' и встроенного имени функции потерь или указателя на функцию.

  • В следующей таблице перечислены доступные функции потерь. Задайте тот с помощью его соответствующего вектора символов или представьте скаляр в виде строки. Кроме того, в таблице, f(x)=T(x)β+b.

    • x является наблюдением (вектор - строка) от переменных прогноза p.

    • T(·) преобразование наблюдения (вектор - строка) для расширения функции. T (x) сопоставляет x в p к высокому мерному пространству (m).

    • β является вектором коэффициентов m.

    • b является скалярным смещением.

    ЗначениеОписание
    'epsiloninsensitive'Нечувствительная к эпсилону потеря: [y,f(x)]=max [0,|yf(x)|ε]
    'mse'MSE: [y,f(x)]=[yf(x)]2

    'epsiloninsensitive' подходит для учеников SVM только.

  • Задайте свою собственную функцию при помощи обозначения указателя на функцию.

    Позвольте n быть количеством наблюдений в X. Ваша функция должна иметь эту подпись:

    lossvalue = lossfun(Y,Yhat,W)

    • Выходным аргументом lossvalue является скаляр.

    • Вы выбираете имя функции (lossfun).

    • Y является n - размерный вектор наблюдаемых ответов. loss передает входной параметр Y в для Y.

    • Yhat является n - размерный вектор предсказанных ответов, который подобен выводу predict.

    • W является n-by-1 числовой вектор весов наблюдения.

    Задайте свою функцию с помощью 'LossFun',@lossfun.

Типы данных: char | string | function_handle

Веса наблюдения, заданные как пара, разделенная запятой, состоящая из 'Weights' и числовой вектор положительных значений. loss взвешивает наблюдения в X с соответствующими значениями в Weights. Размер Weights должен равняться n, количеству наблюдений (строки в X). Если вы предоставляете веса наблюдения, loss вычисляет взвешенную потерю регрессии, то есть, Квадратичную невязку Взвешенного среднего или Нечувствительную к эпсилону Функцию потерь.

loss нормирует Weights, чтобы суммировать к 1.

Типы данных: double | single

Выходные аргументы

свернуть все

Потеря регрессии, возвращенная в виде числа. Интерпретация L зависит от Weights и LossFun. Например, если вы используете веса наблюдения по умолчанию и задаете 'epsiloninsensitive' как функцию потерь, затем L является нечувствительной к эпсилону потерей.

Больше о

свернуть все

Квадратичная невязка взвешенного среднего

Квадратичная невязка взвешенного среднего вычисляется можно следующим образом:

mse=j=1nwj(f(xj)yj)2j=1nwj,

где:

  • n является количеством наблюдений.

  • xj является j th наблюдение (строка данных о предикторе).

  • yj является наблюдаемым ответом на xj.

  • f (xj) является прогнозом ответа Гауссовой модели Mdl регрессии ядра к xj.

  • w является вектором весов наблюдения.

Каждый вес наблюдения в w равен ones(n,1)/n по умолчанию. Можно задать различные значения для весов наблюдения при помощи аргумента пары "имя-значение" 'Weights'. loss нормирует Weights, чтобы суммировать к 1.

Нечувствительная к эпсилону функция потерь

Нечувствительная к эпсилону функция потерь игнорирует ошибки, которые являются в эпсилоне расстояния (ε) значения функции. Функция официально описана как:

Lossε={0 ,if|yf(x)|ε|yf(x)|ε,otherwise.

Средняя нечувствительная к эпсилону потеря вычисляется можно следующим образом:

Loss=j=1nwjmax (0,|yjf(xj)|ε)j=1nwj,

где:

  • n является количеством наблюдений.

  • xj является j th наблюдение (строка данных о предикторе).

  • yj является наблюдаемым ответом на xj.

  • f (xj) является прогнозом ответа Гауссовой модели Mdl регрессии ядра к xj.

  • w является вектором весов наблюдения.

Каждый вес наблюдения в w равен ones(n,1)/n по умолчанию. Можно задать различные значения для весов наблюдения при помощи аргумента пары "имя-значение" 'Weights'. loss нормирует Weights, чтобы суммировать к 1.

Расширенные возможности

Смотрите также

| | |

Введенный в R2018a