резюме

Возобновите обучение Гауссовой модели регрессии ядра

Синтаксис

UpdatedMdl = resume(Mdl,X,Y)
UpdatedMdl = resume(Mdl,X,Y,Name,Value)
[UpdatedMdl,FitInfo] = resume(___)

Описание

пример

UpdatedMdl = resume(Mdl,X,Y) продолжает обучение с теми же опциями, используемыми, чтобы обучить Mdl, включая данные тренировки (данные о предикторе в X и данные об ответе в Y) и расширение функции. Обучение запускается в текущих предполагаемых параметрах в Mdl. Функция возвращает новую Гауссову модель UpdatedMdl регрессии ядра.

пример

UpdatedMdl = resume(Mdl,X,Y,Name,Value) возвращает новую модель регрессии ядра с дополнительными опциями, заданными одним или несколькими аргументами пары "имя-значение". Например, можно изменить опции управления сходимостью, такие как допуски сходимости и максимальное количество дополнительных итераций оптимизации.

пример

[UpdatedMdl,FitInfo] = resume(___) также возвращает подходящую информацию в массиве структур FitInfo с помощью любого из входных параметров в предыдущих синтаксисах.

Примеры

свернуть все

Возобновите обучение Гауссова модель регрессии ядра для большего количества итераций, чтобы улучшить потерю регрессии.

Загрузите набор данных carbig.

load carbig

Задайте переменные прогноза (X) и переменная отклика (Y).

X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;

Удалите строки X и Y, где любой массив имеет значения NaN. При удалении строк со значениями NaN, прежде чем передающие данные к fitrkernel могут ускорить обучение и уменьшать использование памяти.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5); 
Y = R(:,end); 

Зарезервируйте 10% наблюдений как выборка затяжки. Извлеките обучение и протестируйте индексы из определения раздела.

rng(10)  % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Стандартизируйте данные тренировки и обучите модель регрессии ядра. Установите предел итерации к 5 и задайте 'Verbose',1, чтобы отобразить диагностическую информацию.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
Mdl = fitrkernel(Ztrain,Ytrain,'IterationLimit',5,'Verbose',1)
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  5.691016e+00 |  0.000000e+00 |  5.852758e-02 |                |             0 |
|  LBFGS |      1 |            1 |  5.086537e+00 |  8.000000e+00 |  5.220869e-02 |   9.846711e-02 |           256 |
|  LBFGS |      1 |            2 |  3.862301e+00 |  5.000000e-01 |  3.796034e-01 |   5.998808e-01 |           256 |
|  LBFGS |      1 |            3 |  3.460613e+00 |  1.000000e+00 |  3.257790e-01 |   1.615091e-01 |           256 |
|  LBFGS |      1 |            4 |  3.136228e+00 |  1.000000e+00 |  2.832861e-02 |   8.006254e-02 |           256 |
|  LBFGS |      1 |            5 |  3.063978e+00 |  1.000000e+00 |  1.475038e-02 |   3.314455e-02 |           256 |
|=================================================================================================================|
Mdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 256
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1
                   Epsilon: 0.8617


  Properties, Methods

Mdl является a RegressionKernel моделью.

Стандартизируйте тестовые данные с помощью того же среднего и стандартного отклонения столбцов данных тренировки. Оцените нечувствительную к эпсилону ошибку для набора тестов.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

L = loss(Mdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
L = 2.0674

Продолжите обучение модель при помощи resume. Эта функция продолжает обучение с теми же опциями, используемыми для учебного Mdl.

UpdatedMdl = resume(Mdl,Ztrain,Ytrain);
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  3.063978e+00 |  0.000000e+00 |  1.475038e-02 |                |           256 |
|  LBFGS |      1 |            1 |  3.007822e+00 |  8.000000e+00 |  1.391637e-02 |   2.603966e-02 |           256 |
|  LBFGS |      1 |            2 |  2.817171e+00 |  5.000000e-01 |  5.949008e-02 |   1.918084e-01 |           256 |
|  LBFGS |      1 |            3 |  2.807294e+00 |  2.500000e-01 |  6.798867e-02 |   2.973097e-02 |           256 |
|  LBFGS |      1 |            4 |  2.791060e+00 |  1.000000e+00 |  2.549575e-02 |   1.639328e-02 |           256 |
|  LBFGS |      1 |            5 |  2.767821e+00 |  1.000000e+00 |  6.154419e-03 |   2.468903e-02 |           256 |
|  LBFGS |      1 |            6 |  2.738163e+00 |  1.000000e+00 |  5.949008e-02 |   9.476263e-02 |           256 |
|  LBFGS |      1 |            7 |  2.719146e+00 |  1.000000e+00 |  1.699717e-02 |   1.849972e-02 |           256 |
|  LBFGS |      1 |            8 |  2.705941e+00 |  1.000000e+00 |  3.116147e-02 |   4.152590e-02 |           256 |
|  LBFGS |      1 |            9 |  2.701162e+00 |  1.000000e+00 |  5.665722e-03 |   9.401466e-03 |           256 |
|  LBFGS |      1 |           10 |  2.695341e+00 |  5.000000e-01 |  3.116147e-02 |   4.968046e-02 |           256 |
|  LBFGS |      1 |           11 |  2.691277e+00 |  1.000000e+00 |  8.498584e-03 |   1.017446e-02 |           256 |
|  LBFGS |      1 |           12 |  2.689972e+00 |  1.000000e+00 |  1.983003e-02 |   9.938921e-03 |           256 |
|  LBFGS |      1 |           13 |  2.688979e+00 |  1.000000e+00 |  1.416431e-02 |   6.606316e-03 |           256 |
|  LBFGS |      1 |           14 |  2.687787e+00 |  1.000000e+00 |  1.621956e-03 |   7.089542e-03 |           256 |
|  LBFGS |      1 |           15 |  2.686539e+00 |  1.000000e+00 |  1.699717e-02 |   1.169701e-02 |           256 |
|  LBFGS |      1 |           16 |  2.685356e+00 |  1.000000e+00 |  1.133144e-02 |   1.069310e-02 |           256 |
|  LBFGS |      1 |           17 |  2.685021e+00 |  5.000000e-01 |  1.133144e-02 |   2.104248e-02 |           256 |
|  LBFGS |      1 |           18 |  2.684002e+00 |  1.000000e+00 |  2.832861e-03 |   6.175231e-03 |           256 |
|  LBFGS |      1 |           19 |  2.683507e+00 |  1.000000e+00 |  5.665722e-03 |   3.724026e-03 |           256 |
|  LBFGS |      1 |           20 |  2.683343e+00 |  5.000000e-01 |  5.665722e-03 |   9.549119e-03 |           256 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           21 |  2.682897e+00 |  1.000000e+00 |  5.665722e-03 |   7.172867e-03 |           256 |
|  LBFGS |      1 |           22 |  2.682682e+00 |  1.000000e+00 |  2.832861e-03 |   2.587726e-03 |           256 |
|  LBFGS |      1 |           23 |  2.682485e+00 |  1.000000e+00 |  2.832861e-03 |   2.953648e-03 |           256 |
|  LBFGS |      1 |           24 |  2.682326e+00 |  1.000000e+00 |  2.832861e-03 |   7.777294e-03 |           256 |
|  LBFGS |      1 |           25 |  2.681914e+00 |  1.000000e+00 |  2.832861e-03 |   2.778555e-03 |           256 |
|  LBFGS |      1 |           26 |  2.681867e+00 |  5.000000e-01 |  1.031085e-03 |   3.638352e-03 |           256 |
|  LBFGS |      1 |           27 |  2.681725e+00 |  1.000000e+00 |  5.665722e-03 |   1.515199e-03 |           256 |
|  LBFGS |      1 |           28 |  2.681692e+00 |  5.000000e-01 |  1.314940e-03 |   1.850055e-03 |           256 |
|  LBFGS |      1 |           29 |  2.681625e+00 |  1.000000e+00 |  2.832861e-03 |   1.456903e-03 |           256 |
|  LBFGS |      1 |           30 |  2.681594e+00 |  5.000000e-01 |  2.832861e-03 |   8.704875e-04 |           256 |
|  LBFGS |      1 |           31 |  2.681581e+00 |  5.000000e-01 |  8.498584e-03 |   3.934768e-04 |           256 |
|  LBFGS |      1 |           32 |  2.681579e+00 |  1.000000e+00 |  8.498584e-03 |   1.847866e-03 |           256 |
|  LBFGS |      1 |           33 |  2.681553e+00 |  1.000000e+00 |  9.857038e-04 |   6.509825e-04 |           256 |
|  LBFGS |      1 |           34 |  2.681541e+00 |  5.000000e-01 |  8.498584e-03 |   6.635528e-04 |           256 |
|  LBFGS |      1 |           35 |  2.681499e+00 |  1.000000e+00 |  5.665722e-03 |   6.194735e-04 |           256 |
|  LBFGS |      1 |           36 |  2.681493e+00 |  5.000000e-01 |  1.133144e-02 |   1.617763e-03 |           256 |
|  LBFGS |      1 |           37 |  2.681473e+00 |  1.000000e+00 |  9.869233e-04 |   8.418484e-04 |           256 |
|  LBFGS |      1 |           38 |  2.681469e+00 |  1.000000e+00 |  5.665722e-03 |   1.069722e-03 |           256 |
|  LBFGS |      1 |           39 |  2.681432e+00 |  1.000000e+00 |  2.832861e-03 |   8.501930e-04 |           256 |
|  LBFGS |      1 |           40 |  2.681423e+00 |  2.500000e-01 |  1.133144e-02 |   9.543716e-04 |           256 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           41 |  2.681416e+00 |  1.000000e+00 |  2.832861e-03 |   8.763251e-04 |           256 |
|  LBFGS |      1 |           42 |  2.681413e+00 |  5.000000e-01 |  2.832861e-03 |   4.101888e-04 |           256 |
|  LBFGS |      1 |           43 |  2.681403e+00 |  1.000000e+00 |  5.665722e-03 |   2.713209e-04 |           256 |
|  LBFGS |      1 |           44 |  2.681392e+00 |  1.000000e+00 |  2.832861e-03 |   2.115241e-04 |           256 |
|  LBFGS |      1 |           45 |  2.681383e+00 |  1.000000e+00 |  2.832861e-03 |   2.872858e-04 |           256 |
|  LBFGS |      1 |           46 |  2.681374e+00 |  1.000000e+00 |  8.498584e-03 |   5.771001e-04 |           256 |
|  LBFGS |      1 |           47 |  2.681353e+00 |  1.000000e+00 |  2.832861e-03 |   3.160871e-04 |           256 |
|  LBFGS |      1 |           48 |  2.681334e+00 |  5.000000e-01 |  8.498584e-03 |   1.045502e-03 |           256 |
|  LBFGS |      1 |           49 |  2.681314e+00 |  1.000000e+00 |  7.878714e-04 |   1.505118e-03 |           256 |
|  LBFGS |      1 |           50 |  2.681306e+00 |  1.000000e+00 |  2.832861e-03 |   4.756894e-04 |           256 |
|  LBFGS |      1 |           51 |  2.681301e+00 |  1.000000e+00 |  1.133144e-02 |   3.664873e-04 |           256 |
|  LBFGS |      1 |           52 |  2.681288e+00 |  1.000000e+00 |  2.832861e-03 |   1.449821e-04 |           256 |
|  LBFGS |      1 |           53 |  2.681287e+00 |  2.500000e-01 |  1.699717e-02 |   2.357176e-04 |           256 |
|  LBFGS |      1 |           54 |  2.681282e+00 |  1.000000e+00 |  5.665722e-03 |   2.046663e-04 |           256 |
|  LBFGS |      1 |           55 |  2.681278e+00 |  1.000000e+00 |  2.832861e-03 |   2.546349e-04 |           256 |
|  LBFGS |      1 |           56 |  2.681276e+00 |  2.500000e-01 |  1.307940e-03 |   1.966786e-04 |           256 |
|  LBFGS |      1 |           57 |  2.681274e+00 |  5.000000e-01 |  1.416431e-02 |   1.005310e-04 |           256 |
|  LBFGS |      1 |           58 |  2.681271e+00 |  5.000000e-01 |  1.118892e-03 |   1.147324e-04 |           256 |
|  LBFGS |      1 |           59 |  2.681269e+00 |  1.000000e+00 |  2.832861e-03 |   1.332914e-04 |           256 |
|  LBFGS |      1 |           60 |  2.681268e+00 |  2.500000e-01 |  1.132045e-03 |   5.441369e-05 |           256 |
|=================================================================================================================|

Оцените нечувствительную к эпсилону ошибку для набора тестов с помощью обновленной модели.

UpdatedL = loss(UpdatedMdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
UpdatedL = 1.8933

Ошибочные уменьшения регрессии фактором приблизительно 0.08 после resume обновляют модель регрессии с большим количеством итераций.

Загрузите набор данных carbig.

load carbig

Задайте переменные прогноза (X) и переменная отклика (Y).

X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;

Удалите строки X и Y, где любой массив имеет значения NaN. При удалении строк со значениями NaN, прежде чем передающие данные к fitrkernel могут ускорить обучение и уменьшать использование памяти.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5); 
Y = R(:,end); 

Зарезервируйте 10% наблюдений как выборка затяжки. Извлеките обучение и протестируйте индексы из определения раздела.

rng(10)  % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Стандартизируйте данные тренировки и обучите модель регрессии ядра с расслабленными опциями обучения управления сходимостью при помощи аргументов пары "имя-значение" 'BetaTolerance' и 'GradientTolerance'. Задайте 'Verbose',1, чтобы отобразить диагностическую информацию.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
[Mdl,FitInfo] = fitrkernel(Ztrain,Ytrain,'Verbose',1, ...
    'BetaTolerance',2e-2,'GradientTolerance',2e-2);
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  5.691016e+00 |  0.000000e+00 |  5.852758e-02 |                |             0 |
|  LBFGS |      1 |            1 |  5.086537e+00 |  8.000000e+00 |  5.220869e-02 |   9.846711e-02 |           256 |
|  LBFGS |      1 |            2 |  3.862301e+00 |  5.000000e-01 |  3.796034e-01 |   5.998808e-01 |           256 |
|  LBFGS |      1 |            3 |  3.460613e+00 |  1.000000e+00 |  3.257790e-01 |   1.615091e-01 |           256 |
|  LBFGS |      1 |            4 |  3.136228e+00 |  1.000000e+00 |  2.832861e-02 |   8.006254e-02 |           256 |
|  LBFGS |      1 |            5 |  3.063978e+00 |  1.000000e+00 |  1.475038e-02 |   3.314455e-02 |           256 |
|=================================================================================================================|

Mdl является a RegressionKernel моделью.

Стандартизируйте тестовые данные с помощью того же среднего и стандартного отклонения столбцов данных тренировки. Оцените нечувствительную к эпсилону ошибку для набора тестов.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

L = loss(Mdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
L = 2.0674

Продолжите обучение модель при помощи resume с измененными опциями управления сходимостью.

[UpdatedMdl,UpdatedFitInfo] = resume(Mdl,Ztrain,Ytrain, ...
    'BetaTolerance',2e-3,'GradientTolerance',2e-3);
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  3.063978e+00 |  0.000000e+00 |  1.475038e-02 |                |           256 |
|  LBFGS |      1 |            1 |  3.007822e+00 |  8.000000e+00 |  1.391637e-02 |   2.603966e-02 |           256 |
|  LBFGS |      1 |            2 |  2.817171e+00 |  5.000000e-01 |  5.949008e-02 |   1.918084e-01 |           256 |
|  LBFGS |      1 |            3 |  2.807294e+00 |  2.500000e-01 |  6.798867e-02 |   2.973097e-02 |           256 |
|  LBFGS |      1 |            4 |  2.791060e+00 |  1.000000e+00 |  2.549575e-02 |   1.639328e-02 |           256 |
|  LBFGS |      1 |            5 |  2.767821e+00 |  1.000000e+00 |  6.154419e-03 |   2.468903e-02 |           256 |
|  LBFGS |      1 |            6 |  2.738163e+00 |  1.000000e+00 |  5.949008e-02 |   9.476263e-02 |           256 |
|  LBFGS |      1 |            7 |  2.719146e+00 |  1.000000e+00 |  1.699717e-02 |   1.849972e-02 |           256 |
|  LBFGS |      1 |            8 |  2.705941e+00 |  1.000000e+00 |  3.116147e-02 |   4.152590e-02 |           256 |
|  LBFGS |      1 |            9 |  2.701162e+00 |  1.000000e+00 |  5.665722e-03 |   9.401466e-03 |           256 |
|  LBFGS |      1 |           10 |  2.695341e+00 |  5.000000e-01 |  3.116147e-02 |   4.968046e-02 |           256 |
|  LBFGS |      1 |           11 |  2.691277e+00 |  1.000000e+00 |  8.498584e-03 |   1.017446e-02 |           256 |
|  LBFGS |      1 |           12 |  2.689972e+00 |  1.000000e+00 |  1.983003e-02 |   9.938921e-03 |           256 |
|  LBFGS |      1 |           13 |  2.688979e+00 |  1.000000e+00 |  1.416431e-02 |   6.606316e-03 |           256 |
|  LBFGS |      1 |           14 |  2.687787e+00 |  1.000000e+00 |  1.621956e-03 |   7.089542e-03 |           256 |
|=================================================================================================================|

Оцените нечувствительную к эпсилону ошибку для набора тестов с помощью обновленной модели.

UpdatedL = loss(UpdatedMdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
UpdatedL = 1.8891

Ошибочные уменьшения регрессии после resume обновляют модель регрессии с меньшими допусками сходимости.

Отобразите выходные параметры FitInfo и UpdatedFitInfo.

FitInfo
FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'epsiloninsensitive'
                  Lambda: 0.0028
           BetaTolerance: 0.0200
       GradientTolerance: 0.0200
          ObjectiveValue: 3.0640
       GradientMagnitude: 0.0148
    RelativeChangeInBeta: 0.0331
                 FitTime: 0.0674
                 History: [1x1 struct]

UpdatedFitInfo
UpdatedFitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'epsiloninsensitive'
                  Lambda: 0.0028
           BetaTolerance: 0.0020
       GradientTolerance: 0.0020
          ObjectiveValue: 2.6878
       GradientMagnitude: 0.0016
    RelativeChangeInBeta: 0.0071
                 FitTime: 0.1193
                 History: [1x1 struct]

Оба обучения останавливается, потому что программное обеспечение удовлетворяет абсолютный допуск градиента.

Постройте величину градиента по сравнению с количеством итераций при помощи UpdatedFitInfo.History.GradientMagnitude. Обратите внимание на то, что поле History UpdatedFitInfo включает информацию в поле History FitInfo.

semilogy(UpdatedFitInfo.History.GradientMagnitude,'o-')
ax = gca;
ax.XTick = 1:21;
ax.XTickLabel = UpdatedFitInfo.History.IterationNumber;
grid on
xlabel('Number of Iterations')
ylabel('Gradient Magnitude')

Первое обучение останавливается после пяти итераций, потому что величина градиента становится меньше, чем 2e-2. Второе обучение останавливается после 14 итераций, потому что величина градиента становится меньше, чем 2e-3.

Входные параметры

свернуть все

Модель регрессии ядра, заданная как объект модели RegressionKernel. Можно создать объект модели RegressionKernel с помощью fitrkernel.

Данные о предикторе раньше обучали Mdl, заданный как n-by-p числовая матрица, где n является количеством наблюдений, и p является количеством предикторов.

Типы данных: single | double

Данные об ответе раньше обучали Mdl, заданный как числовой вектор.

Типы данных: double | single

Примечание

resume должен запуститься только на тех же данных тренировки (X и Y), и те же веса наблюдения (Weights) раньше обучали Mdl. Функция resume использует те же опции обучения, такие как расширение функции, используемое, чтобы обучить Mdl.

Аргументы в виде пар имя-значение

Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: UpdatedMdl = resume(Mdl,X,Y,'BetaTolerance',1e-3) возобновляет обучение с теми же опциями, используемыми, чтобы обучить Mdl, кроме относительного допуска на линейных коэффициентах и сроке смещения.

Веса наблюдения раньше обучали Mdl, заданный как пара, разделенная запятой, состоящая из 'Weights' и положительный числовой вектор длины n, где n является количеством наблюдений в X. Функция resume взвешивает наблюдения в X с соответствующими значениями в Weights.

Значением по умолчанию является ones(n,1)/n.

resume нормирует Weights, чтобы суммировать к 1.

Пример: 'Weights',w

Типы данных: single | double

Относительный допуск на линейных коэффициентах и сроке смещения (прерывание), заданное как пара, разделенная запятой, состоящая из 'BetaTolerance' и неотрицательного скаляра.

Пусть Bt=[βtbt], то есть, вектор коэффициентов и смещения называет в итерации оптимизации t. Если BtBt1Bt2<BetaTolerance, затем оптимизация останавливается.

Если вы также задаете GradientTolerance, то оптимизация останавливается, когда программное обеспечение удовлетворяет любой критерий остановки.

По умолчанию значение является тем же значением BetaTolerance, используемым, чтобы обучить Mdl.

Пример: 'BetaTolerance',1e-6

Типы данных: single | double

Абсолютный допуск градиента, заданный как пара, разделенная запятой, состоящая из 'GradientTolerance' и неотрицательного скаляра.

Пусть t будьте вектором градиента целевой функции относительно коэффициентов, и смещение называют в итерации оптимизации t. Если t=max |t|<GradientTolerance, затем оптимизация останавливается.

Если вы также задаете BetaTolerance, то оптимизация останавливается, когда программное обеспечение удовлетворяет любой критерий остановки.

По умолчанию значение является тем же значением GradientTolerance, используемым, чтобы обучить Mdl.

Пример: 'GradientTolerance',1e-5

Типы данных: single | double

Максимальное количество дополнительных итераций оптимизации, заданных как пара, разделенная запятой, состоящая из 'IterationLimit' и положительного целого числа.

Значение по умолчанию 1000, если преобразованные совпадения данных в памяти (Mdl.ModelParameters.BlockSize), который вы задаете при помощи аргумента пары "имя-значение" 'BlockSize' когда учебный Mdl с fitrkernel. В противном случае значение по умолчанию равняется 100.

Обратите внимание на то, что значение по умолчанию не является значением, используемым, чтобы обучить Mdl.

Пример: 'IterationLimit',500

Типы данных: single | double

Выходные аргументы

свернуть все

Обновленная модель регрессии ядра, возвращенная как объект модели RegressionKernel.

Детали оптимизации, возвращенные как массив структур включая поля, описаны в этой таблице. Поля содержат спецификации аргумента пары "имя-значение" или окончательные значения.

Поле Описание
Solver

Метод минимизации целевой функции: 'LBFGS-fast', 'LBFGS-blockwise' или 'LBFGS-tall'. Для получения дополнительной информации смотрите раздел Algorithms fitrkernel.

LossFunctionФункция потерь. Или среднеквадратическая ошибка (MSE) или нечувствительный к эпсилону, в зависимости от типа модели линейной регрессии. Смотрите Learner fitrkernel.
LambdaСила срока регуляризации. Смотрите Lambda fitrkernel.
BetaToleranceОтносительный допуск на линейных коэффициентах и сроке смещения. Смотрите BetaTolerance.
GradientToleranceАбсолютный допуск градиента. Смотрите GradientTolerance.
ObjectiveValueЗначение целевой функции, когда оптимизация останавливается. Потеря регрессии плюс срок регуляризации составляет целевую функцию.
GradientMagnitudeНорма Бога вектора градиента целевой функции, когда оптимизация останавливается. Смотрите GradientTolerance.
RelativeChangeInBetaОтносительные изменения в линейных коэффициентах и смещении называют, когда оптимизация останавливается. Смотрите BetaTolerance.
FitTimeПрошедшее, тактовое стеной время (в секундах) требуемый соответствовать модели к данным.
HistoryИстория информации об оптимизации. Это поле также включает информацию об оптимизации от учебного Mdl. Это поле пусто ([]), если вы задаете 'Verbose',0 когда учебный Mdl. Для получения дополнительной информации смотрите Verbose и раздел Algorithms fitrkernel.

К полям доступа используйте запись через точку. Например, чтобы получить доступ к вектору значений целевой функции для каждой итерации, введите FitInfo.ObjectiveValue в Командном окне.

Исследуйте информацию, предоставленную FitInfo, чтобы оценить, является ли сходимость удовлетворительной.

Больше о

свернуть все

Случайное расширение функции

Случайное расширение функции, такое как Случайные Раковины [1] и Быстрое питание [2], является схемой аппроксимировать Гауссовы ядра алгоритма регрессии ядра для больших данных в вычислительном отношении эффективным способом. Случайное расширение функции более практично для больших применений данных, которые имеют большие наборы обучающих данных, но могут также быть применены к меньшим наборам данных, которые умещаются в памяти.

Алгоритм регрессии ядра ищет оптимальную функцию, которая отклоняется от каждой точки данных ответа (yi) значениями, не больше, чем поле эпсилона (ε) после отображения данных о предикторе в высокое мерное пространство.

Некоторые проблемы регрессии не могут быть описаны соответственно с помощью линейной модели. В таких случаях получите нелинейную модель регрессии, заменив скалярное произведение x 1x2 с нелинейной функцией ядра G(x1,x2)=φ(x1),φ(x2), где xi является i th наблюдение (вектор - строка), и φ (xi) является преобразованием, которое сопоставляет xi с высоким мерным пространством (названный “приемом ядра”). Однако оценивая G (x 1, x 2), матрица Грамма, для каждой пары наблюдений является в вычислительном отношении дорогой для большого набора данных (большой n).

Случайная схема расширения функции находит случайное преобразование так, чтобы его скалярное произведение аппроксимировало Гауссово ядро. Таким образом,

G(x1,x2)=φ(x1),φ(x2)T(x1)T(x2)',

где T (x) сопоставляет x в p к высокому мерному пространству (m). Схема Random Kitchen Sink [1] использует случайное преобразование

T(x)=m1/2exp(iZx')',

где Zm×p выборка, чертившая от N(0,σ2) и σ 2 является шкалой ядра. Эта схема требует O (m p) вычисление и устройство хранения данных. Схема Fastfood [2] вводит другое случайное основание V вместо Z с помощью матриц Адамара, объединенных с Гауссовыми матрицами масштабирования. Это случайное основание уменьшает стоимость вычисления для O (m log p) и уменьшает устройство хранения данных до O (m).

Можно задать значения для m и σ 2, с помощью аргументов пары "имя-значение" NumExpansionDimensions и KernelScale fitrkernel, соответственно.

Функция fitrkernel использует схему Fastfood случайного расширения функции и использует линейную регрессию, чтобы обучить Гауссову модель регрессии ядра. В отличие от решателей в функции fitrsvm, которые требуют вычисления n-by-n матрица Грамма, решатель в fitrkernel только должен сформировать матрицу размера n-by-m с m обычно намного меньше, чем n для больших данных.

Расширенные возможности

Смотрите также

| | |

Введенный в R2018a