Класс: RegressionLinear
Потеря регрессии для моделей линейной регрессии
L = loss(Mdl,X,Y)L = loss(___,Name,Value) использование любой из предыдущих синтаксисов и дополнительных опций задано одним или несколькими аргументами пары L = loss(___,Name,Value)Name,Value. Например, укажите, что столбцы в данных о предикторе соответствуют наблюдениям или задают функцию потерь регрессии.
Mdl — Модель линейной регрессииRegressionLinearМодель линейной регрессии, заданная как объект модели RegressionLinear. Можно создать объект модели RegressionLinear с помощью fitrlinear.
X Данные о предиктореДанные о предикторе, заданные как n-by-p полная или разреженная матрица. Эта ориентация X указывает, что строки соответствуют отдельным наблюдениям, и столбцы соответствуют отдельным переменным прогноза.
Если вы ориентируете свою матрицу предиктора так, чтобы наблюдения соответствовали столбцам и задали 'ObservationsIn','columns', то вы можете испытать значительное сокращение во время вычисления.
Длина Y и количество наблюдений в X должны быть равными.
Типы данных: single | double
Y Данные об ответеДанные об ответе, заданные как n - размерный числовой вектор. Длина Y и количество наблюдений в X должны быть равными.
Типы данных: single | double
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
'LossFun' — Функция потерь'mse' (значение по умолчанию) | 'epsiloninsensitive' | указатель на функциюФункция потерь, заданная как пара, разделенная запятой, состоящая из 'LossFun' и встроенного имени функции потерь или указателя на функцию.
В следующей таблице перечислены доступные функции потерь. Задайте тот с помощью его соответствующего значения. Кроме того, в таблице,
β является вектором коэффициентов p.
x является наблюдением от переменных прогноза p.
b является скалярным смещением.
| Значение | Описание |
|---|---|
'epsiloninsensitive' | Нечувствительная к эпсилону потеря: |
'mse' | MSE: |
'epsiloninsensitive' подходит для учеников SVM только.
Задайте свою собственную функцию с помощью обозначения указателя на функцию.
Позвольте n быть количеством наблюдений в X. Ваша функция должна иметь эту подпись
lossvalue = lossfun(Y,Yhat,W)Выходным аргументом lossvalue является скаляр.
Вы выбираете имя функции (lossfun).
Y является n - размерный вектор наблюдаемых ответов. loss передает входной параметр Y в для Y.
Yhat является n - размерный вектор предсказанных ответов, который подобен выводу predict.
W является n-by-1 числовой вектор весов наблюдения.
Задайте свою функцию с помощью .'LossFun',@lossfun
Типы данных: char | string | function_handle
'ObservationsIn' — Размерность наблюдения данных о предикторе'rows' (значение по умолчанию) | 'columns'Размерность наблюдения данных о предикторе, заданная как пара, разделенная запятой, состоящая из 'ObservationsIn' и 'columns' или 'rows'.
Если вы ориентируете свою матрицу предиктора так, чтобы наблюдения соответствовали столбцам и задали 'ObservationsIn','columns', то вы можете испытать значительное сокращение во время выполнения оптимизации.
'Weights' — Веса наблюденияВеса наблюдения, заданные как пара, разделенная запятой, состоящая из 'Weights' и числовой вектор положительных значений. Если вы предоставляете веса, loss вычисляет взвешенную потерю классификации.
Позвольте n быть количеством наблюдений в X.
numel(Weights) должен быть n.
По умолчанию Weights является .ones(n,1)
Типы данных: double | single
L Потери регрессииЕсли Mdl.FittedLoss является 'mse', то термин потерь в целевой функции является половиной MSE. loss возвращает MSE по умолчанию. Поэтому, если вы используете loss, чтобы проверять перезамену (обучение) ошибка, затем существует несоответствие между MSE и результатами оптимизации, которые возвращает fitrlinear.
Моделируйте 10 000 наблюдений из этой модели
10000 1000 разреженная матрица с 10%-ми ненулевыми стандартными нормальными элементами.
e является случайной нормальной ошибкой со средним значением 0 и стандартным отклонением 0.3.
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);Обучите модель линейной регрессии. Зарезервируйте 30% наблюдений как выборка затяжки.
CVMdl = fitrlinear(X,Y,'Holdout',0.3);
Mdl = CVMdl.Trained{1}Mdl =
RegressionLinear
ResponseName: 'Y'
ResponseTransform: 'none'
Beta: [1000x1 double]
Bias: -0.0066
Lambda: 1.4286e-04
Learner: 'svm'
Properties, Methods
CVMdl является моделью RegressionPartitionedLinear. Это содержит свойство Trained, которое является массивом ячеек 1 на 1, содержащим модель RegressionLinear, что программное обеспечение обучило использование набора обучающих данных.
Извлеките обучение и тестовые данные из определения раздела.
trainIdx = training(CVMdl.Partition); testIdx = test(CVMdl.Partition);
Оцените обучение - и демонстрационный тестом MSE.
mseTrain = loss(Mdl,X(trainIdx,:),Y(trainIdx))
mseTrain = 0.1496
mseTest = loss(Mdl,X(testIdx,:),Y(testIdx))
mseTest = 0.1798
Поскольку существует одна сила регуляризации в Mdl, mseTrain и mseTest являются числовыми скалярами.
Моделируйте 10 000 наблюдений из этой модели
10000 1000 разреженная матрица с 10%-ми ненулевыми стандартными нормальными элементами.
e является случайной нормальной ошибкой со средним значением 0 и стандартным отклонением 0.3.
rng(1) % For reproducibility n = 1e4; d = 1e3; nz = 0.1; X = sprandn(n,d,nz); Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1); X = X'; % Put observations in columns for faster training
Обучите модель линейной регрессии. Зарезервируйте 30% наблюдений как выборка затяжки.
CVMdl = fitrlinear(X,Y,'Holdout',0.3,'ObservationsIn','columns'); Mdl = CVMdl.Trained{1}
Mdl =
RegressionLinear
ResponseName: 'Y'
ResponseTransform: 'none'
Beta: [1000x1 double]
Bias: -0.0066
Lambda: 1.4286e-04
Learner: 'svm'
Properties, Methods
CVMdl является моделью RegressionPartitionedLinear. Это содержит свойство Trained, которое является массивом ячеек 1 на 1, содержащим модель RegressionLinear, что программное обеспечение обучило использование набора обучающих данных.
Извлеките обучение и тестовые данные из определения раздела.
trainIdx = training(CVMdl.Partition); testIdx = test(CVMdl.Partition);
Создайте анонимную функцию, которая измеряет утрату Хубера ( = 1), то есть,
где
невязка для наблюдения j. Пользовательские функции потерь должны быть написаны в конкретной форме. Для правил о записи пользовательской функции потерь смотрите аргумент пары "имя-значение" 'LossFun'.
huberloss = @(Y,Yhat,W)sum(W.*((0.5*(abs(Y-Yhat)<=1).*(Y-Yhat).^2) + ...
((abs(Y-Yhat)>1).*abs(Y-Yhat)-0.5)))/sum(W);Оцените потерю регрессии набора обучающих данных и набора тестов с помощью функции потерь Хубера.
eTrain = loss(Mdl,X(:,trainIdx),Y(trainIdx),'LossFun',huberloss,... 'ObservationsIn','columns')
eTrain = -0.4186
eTest = loss(Mdl,X(:,testIdx),Y(testIdx),'LossFun',huberloss,... 'ObservationsIn','columns')
eTest = -0.4010
Моделируйте 10 000 наблюдений из этой модели
10000 1000 разреженная матрица с 10%-ми ненулевыми стандартными нормальными элементами.
e является случайной нормальной ошибкой со средним значением 0 и стандартным отклонением 0.3.
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);Создайте набор 15 логарифмически распределенных сильных мест регуляризации от через .
Lambda = logspace(-4,-1,15);
Протяните 30% данных для тестирования. Идентифицируйте демонстрационные тестом индексы.
cvp = cvpartition(numel(Y),'Holdout',0.30);
idxTest = test(cvp);Обучите модель линейной регрессии, использующую штрафы лассо с сильными местами в Lambda. Задайте сильные места регуляризации, оптимизировав использование целевой функции SpaRSA и раздел данных. Чтобы увеличить скорость выполнения, транспонируйте данные о предикторе и укажите, что наблюдения находятся в столбцах.
X = X'; CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,... 'Solver','sparsa','Regularization','lasso','CVPartition',cvp); Mdl1 = CVMdl.Trained{1}; numel(Mdl1.Lambda)
ans = 15
Mdl1 является моделью RegressionLinear. Поскольку Lambda является 15-мерным вектором сильных мест регуляризации, можно думать о Mdl1 как о 15 обученных моделях, один для каждой силы регуляризации.
Оцените демонстрационную тестом среднеквадратическую ошибку для каждой упорядоченной модели.
mse = loss(Mdl1,X(:,idxTest),Y(idxTest),'ObservationsIn','columns');
Более высокие значения Lambda приводят к разреженности переменной прогноза, которая является хорошим качеством модели регрессии. Переобучите модель с помощью целого набора данных и всех опций, используемых ранее, кроме спецификации раздела данных. Определите количество ненулевых коэффициентов на модель.
Mdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,... 'Solver','sparsa','Regularization','lasso'); numNZCoeff = sum(Mdl.Beta~=0);
В той же фигуре постройте MSE и частоту ненулевых коэффициентов для каждой силы регуляризации. Постройте все переменные на логарифмической шкале.
figure; [h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),... log10(Lambda),log10(numNZCoeff)); hL1.Marker = 'o'; hL2.Marker = 'o'; ylabel(h(1),'log_{10} MSE') ylabel(h(2),'log_{10} nonzero-coefficient frequency') xlabel('log_{10} Lambda') hold off

Выберите индекс или индексы Lambda, которые балансируют минимальную ошибку классификации и разреженность переменной прогноза (например, Lambda(11)).
idx = 11; MdlFinal = selectModels(Mdl,idx);
MdlFinal является обученным объектом модели RegressionLinear, который использует Lambda(11) в качестве силы регуляризации.
Эта функция полностью поддерживает "высокие" массивы. Для получения дополнительной информации смотрите Длинные массивы (MATLAB).
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.