Аппроксимирующая функция Padé

Аппроксимирующая функция Padé порядка [mn] аппроксимирует функциональный f (x) вокруг x = x 0 как

a0+a1(xx0)+...+am(xx0)m1+b1(xx0)+...+bn(xx0)n.

Аппроксимирующая функция Padé является рациональной функцией, сформированной отношением двух степенных рядов. Поскольку это - рациональная функция, это более точно, чем Ряд Тейлора в приближении функций с полюсами. Аппроксимирующая функция Padé представлена функцией Symbolic Math Toolbox™ pade.

Когда полюс или нуль существуют в точке расширения x = x 0, точность уменьшений аппроксимирующей функции Padé. Чтобы увеличить точность, альтернативная форма аппроксимирующей функции Padé может использоваться, который является

(xx0)p(a0+a1(xx0)+...+am(xx0)m)1+b1(xx0)+...+bn(xx0)n.

Функция pade возвращает альтернативную форму аппроксимирующей функции Padé, когда вы устанавливаете входной параметр OrderMode на Relative.

Аппроксимирующая функция Padé используется в теории системы управления смоделировать задержки ответа системы. Задержки возникают в системах, таких как химические и транспортные процессы, где существует задержка между входом и откликом системы. Когда эти входные параметры моделируются, они называются входными параметрами потери времени. Этот пример показывает, как использовать Symbolic Math Toolbox, чтобы смоделировать ответ системы первого порядка к входному использованию потери времени аппроксимирующие функции Padé.

Поведение системы первого порядка описано этим дифференциальным уравнением

τdy(t)dt+y(t)=ax(t).

Введите дифференциальное уравнение в MATLAB®.

syms tau a x(t) y(t) xS(s) yS(s) H(s) tmp
F = tau*diff(y)+y == a*x;

Найдите Преобразование Лапласа F с помощью laplace.

F = laplace(F,t,s)
F = Лаплас(y(t),t,s)-τy(0)-sЛаплас(y(t),t,s)=aЛаплас(x(t),t,s)

Примите, что ответом системы в t = 0 является 0. Используйте subs, чтобы заменить y(0) = 0.

F = subs(F,y(0),0)
F = Лаплас(y(t),t,s)+sτЛаплас(y(t),t,s)=aЛаплас(x(t),t,s)

Чтобы собрать распространенные слова, используйте simplify.

F = simplify(F)
F = sτ+1Лаплас(y(t),t,s)=aЛаплас(x(t),t,s)

Для удобочитаемости замените Преобразования Лапласа x(t) и y(t) с xS(s) и yS(s).

F = subs(F,[laplace(x(t),t,s) laplace(y(t),t,s)],[xS(s) yS(s)])
F = yS(s)sτ+1=axS(s)

Преобразованием Лапласа передаточной функции является yS(s)/xS(s). Разделите обе стороны уравнения xS(s) и используйте subs, чтобы заменить yS(s)/xS(s) на H(s).

F = F/xS(s);
F = subs(F,yS(s)/xS(s),H(s))
F = H(s)sτ+1=a

Решите уравнение для H(s). Замените H(s) с фиктивной переменной, решите для фиктивной переменной с помощью solve и присвойте решение назад H(s).

F = subs(F,H(s),tmp);
H(s) = solve(F,tmp)
H(s) = 

asτ+1

Вход к системе первого порядка является задержанным временем входом шага. Чтобы представлять вход шага, используйте heaviside. Задержите вход тремя единицами измерения времени. Найдите Преобразование Лапласа с помощью laplace.

step = heaviside(t - 3);
step = laplace(step)
step = 

e-3ss

Найдите ответ системы, которая является продуктом передаточной функции и входа.

y = H(s)*step
y = 

ae-3sssτ+1

Чтобы позволить строить ответа, установите параметры a и tau к их значениям. Для a и tau, выберите значения 1 и 3, соответственно.

y = subs(y,[a tau],[1 3]);
y = ilaplace(y,s);

Найдите аппроксимирующую функцию Padé порядка [2 2] входа шага с помощью входного параметра Order для pade.

stepPade22 = pade(step,'Order',[2 2])
stepPade22 = 

3s2-4s+22ss+1

Найдите ответ на вход путем умножения передаточной функции и аппроксимирующей функции Padé входа.

yPade22 = H(s)*stepPade22
yPade22 = 

a3s2-4s+22ssτ+1s+1

Найдите обратное Преобразование Лапласа yPade22 с помощью ilaplace.

yPade22 = ilaplace(yPade22,s)
yPade22 = 

a+9ae-s2τ-2-ae-sτ2τ2+4τ+3τ2τ-2

Чтобы построить ответ, установите параметры a и tau к их значениям 1 и 3, соответственно.

yPade22 = subs(yPade22,[a tau],[1 3])
yPade22 = 

9e-s4-11e-s34+1

Постройте ответ системы y и ответ, вычисленный от аппроксимирующей функции Padé yPade22.

hold on
grid on
fplot([y yPade22],[0 20])
title('Pade Approximant for dead-time step input')
legend('Response to dead-time step input',...
       'Pade approximant [2 2]',...
       'Location', 'Best')

Аппроксимирующая функция Padé [2 2] не представляет ответ хорошо, потому что полюс существует в точке расширения 0. Чтобы увеличить точность pade, когда существует полюс или нуль в точке расширения, устанавливает входной параметр OrderMode на Relative и повторяют шаги. Для получения дополнительной информации смотрите pade.

stepPade22Rel = pade(step,'Order',[2 2],'OrderMode','Relative')
stepPade22Rel = 

3s2-6s+4s3s2+6s+4

yPade22Rel = H(s)*stepPade22Rel
yPade22Rel = 

a3s2-6s+4ssτ+13s2+6s+4

yPade22Rel = ilaplace(yPade22Rel)
yPade22Rel = 

a-ae-tτ4τ2+6τ+3σ1+12aτe-tпотому что(3t3)-3sin(3t3)-72aτ+36a36aτ+1σ1где  σ1=4τ2-6τ+3

yPade22Rel = subs(yPade22Rel,[a tau],[1 3])
yPade22Rel = 

12e-tпотому что(3t3)+23sin(3t3)37-19e-t37+1

fplot(yPade22Rel,[0 20],'DisplayName','Relative Pade approximant [2 2]')

Точность аппроксимирующей функции Padé может также быть увеличена путем увеличения ее порядка. Увеличьте порядок до [4 5] и повторите шаги. Аппроксимирующая функция Padé [n-1 n] лучше в приближении ответа в t = 0, чем аппроксимирующая функция Padé [n n].

stepPade45 = pade(step,'Order',[4 5])
stepPade45 = 

27s4-180s3+540s2-840s+560s27s4+180s3+540s2+840s+560

yPade45 = H(s)*stepPade45
yPade45 = 

a27s4-180s3+540s2-840s+560ssτ+127s4+180s3+540s2+840s+560

yPade45 = subs(yPade45,[a tau],[1 3])
yPade45 = 

27s4-180s3+540s2-840s+560s3s+127s4+180s3+540s2+840s+560

yPade45 = ilaplace(yPade45)
yPade45 = 

294120k=14etσ2σ22σ11001-2721e-t31001+46440k=14etσ2σ23σ11001+172560k=14etσ2σ1143+101520k=14eσ2tσ21290σ2+45σ22+9σ23+70143+1где  σ1=1245σ22+9σ23+90σ2+70  σ2=корень(s54+20s533+20s52+280s59+56027,s5,k)

yPade45 = vpa(yPade45)
yPade45 = 3.2418384981662546679005910164486e-1.930807068546914778929595950184tпотому что(0.57815608595633583454598214328008t)-2.7182817182817182817182817182817e-0.33333333333333333333333333333333t-1.5235567798845363861823092981669e-1.4025262647864185544037373831494tпотому что(1.7716120279045018112388813990878t)+11.595342871672681856604670597166e-1.930807068546914778929595950184tsin(0.57815608595633583454598214328008t)-1.7803798379230333426855987436911e-1.4025262647864185544037373831494tsin(1.7716120279045018112388813990878t)+1.0
fplot(yPade45,[0 20],'DisplayName','Pade approximant [4 5]')

Следующие моменты показали:

  • Аппроксимирующие функции Padé могут смоделировать входные параметры шага потери времени.

  • Точность аппроксимирующей функции Padé увеличивается с увеличением порядка аппроксимирующей функции.

  • Когда полюс или нуль существуют в точке расширения, аппроксимирующая функция Padé неточна о точке расширения. Чтобы увеличить точность аппроксимирующей функции, установите опцию OrderMode на Relative. Можно также использовать, увеличивают порядок знаменателя относительно числителя.

Для просмотра документации необходимо авторизоваться на сайте