comm.DecisionFeedbackEqualizer

Компенсируйте модулируемые сигналы с помощью фильтрации обратной связи решения

Описание

comm.DecisionFeedbackEqualizer Система object™ использует линию задержки касания фильтра обратной связи решения со взвешенной суммой, чтобы компенсировать модулируемые сигналы, переданные через дисперсионный канал. Объект эквалайзера адаптивно настраивает веса касания на основе выбранного алгоритма. Для получения дополнительной информации см. Алгоритмы.

Компенсировать модулируемые сигналы с помощью фильтра обратной связи решения:

  1. Создайте comm.DecisionFeedbackEqualizer объект и набор его свойства.

  2. Вызовите объект с аргументами, как будто это была функция.

Чтобы узнать больше, как Системные объекты работают, смотрите то, Что Системные объекты? MATLAB.

Создание

Описание

пример

dfe = comm.DecisionFeedbackEqualizer создает Системный объект эквалайзера обратной связи решения, чтобы адаптивно компенсировать сигнал.

пример

dfe = comm.DecisionFeedbackEqualizer(Name,Value) свойства наборов с помощью одной или нескольких пар "имя-значение". Например, comm.DecisionFeedbackEqualizer('Algorithm','RLS') конфигурирует объект эквалайзера обновить веса касания с помощью алгоритма рекурсивных наименьших квадратов (RLS). Заключите каждое имя свойства в кавычки.

Свойства

развернуть все

Если в противном случае не обозначено, свойства являются ненастраиваемыми, что означает, что вы не можете изменить их значения после вызова объекта. Объекты блокируют, когда вы вызываете их и release функция разблокировала их.

Если свойство является настраиваемым, можно изменить его значение в любое время.

Для получения дополнительной информации об изменении значений свойств смотрите Разработку системы в MATLAB Используя Системные объекты (MATLAB).

Адаптивный алгоритм используется в эквализации, заданной как одно из этих значений:

Типы данных: char | string

Количество прямых касаний эквалайзера, заданных как положительное целое число.

Типы данных: double

Количество касаний эквалайзера обратной связи, заданных как положительное целое число.

Типы данных: double

Размер шага используется адаптивным алгоритмом, заданным как положительная скалярная величина. Увеличение размера шага уменьшает время сходимости эквалайзера, но заставляет эквалайзер выходные оценки быть менее устойчивым.

Совет

Чтобы определить максимальный позволенный размер шага, используйте maxstep объектная функция.

Настраиваемый: да

Зависимости

Чтобы включить это свойство, установите Алгоритм на 'LMS' или 'CMA'.

Типы данных: double

Упущение фактора, используемого адаптивным алгоритмом, заданным как скаляр в области значений (0, 1]. Уменьшение фактора упущения уменьшает время сходимости эквалайзера, но заставляет эквалайзер выходные оценки быть менее устойчивым.

Настраиваемый: да

Зависимости

Чтобы включить это свойство, установите Алгоритм на 'RLS'.

Типы данных: double

Начальная матрица обратной корреляции, заданная как скаляр или N Taps-by-NTaps матрица. Касания N равны сумме значений свойств NumForwardTaps и NumFeedbackTaps. Если вы задаете InitialInverseCorrelationMatrix как скаляр, a, эквалайзер устанавливает начальную матрицу обратной корреляции на времена a единичная матрица: a (eye(Касания N)).

Настраиваемый: да

Зависимости

Чтобы включить это свойство, установите Алгоритм на 'RLS'.

Типы данных: double

Сигнальное созвездие, заданное как вектор. Значением по умолчанию является сгенерированное использование созвездия QPSK этого кода: pskmod(0:3,4,pi/4).

Настраиваемый: да

Типы данных: double

Ссылочное касание, заданное как положительное целое число, меньше чем или равное значению свойства NumForwardTaps. Эквалайзер использует ссылочное местоположение касания, чтобы отследить основную энергию канала.

Типы данных: double

Задержка входного сигнала выборок относительно времени сброса эквалайзера, заданного как неотрицательное целое число. Если входной сигнал является вектором длины, больше, чем 1, то входная задержка относительно запуска входного вектора. Если входной сигнал является скаляром, то входная задержка относительно первого вызова Системного объекта и к первому вызову Системного объекта после вызова release или reset объектная функция.

Типы данных: double

Количество входных выборок на символ, заданный как положительное целое число. При установке этого свойства на любой номер, больше, чем, каждый эффективно создает незначительно расположенный с интервалами эквалайзер.

Типы данных: double

Включите учебный вход управления, заданный как false или true. Установка этого свойства к true включает вход tf флага обучения эквалайзера.

Настраиваемый: да

Типы данных: логический

Обновите веса касания если не обучение, заданное как true или false. Если это свойство установлено в true, Системный объект использует направленный режим решения, чтобы обновить веса касания эквалайзера. Если это свойство установлено в false, Системный объект сохраняет веса касания эквалайзера неизменными после обучения.

Настраиваемый: да

Типы данных: логический

Источник адаптирует запрос весов касания, заданный как одно из этих значений:

  • 'Property' — Задайте это значение, чтобы использовать свойство AdaptWeights управлять, когда Системный объект адаптирует веса касания.

  • 'Input port' — Задайте это значение, чтобы использовать aw введите, чтобы управлять, когда Системный объект адаптирует веса касания.

Зависимости

Чтобы включить это свойство, установите Алгоритм на 'CMA'.

Типы данных: char | string

Адаптируйте веса касания, заданные как true или false. Если это свойство установлено в true, Системный объект обновляет веса касания эквалайзера. Если это свойство установлено в false, Системный объект сохраняет веса касания эквалайзера неизменными.

Настраиваемый: да

Зависимости

Чтобы включить это свойство, установите AdaptWeightsSource на 'Property' и набор AdaptAfterTraining к true.

Типы данных: логический

Источник для начальных весов касания, заданных как одно из этих значений:

  • 'Auto' — Инициализируйте веса касания к специфичным для алгоритма значениям по умолчанию, как описано в свойстве InitialWeights.

  • 'Property' — Инициализируйте веса касания с помощью значения свойства InitialWeights.

Типы данных: char | string

Начальные веса используются адаптивным алгоритмом, заданным как скаляр или вектор. Значением по умолчанию является 0 когда свойство Algorithm установлено в 'LMS' или 'RLS'. Значением по умолчанию является [0;0;1;0;0] когда свойство Algorithm установлено в 'CMA'.

Если вы задаете InitialWeights как скаляр, эквалайзер использует скалярное расширение, чтобы создать вектор длины Касания N со всем набором значений к InitialWeights. Касания N равны сумме значений свойств NumForwardTaps и NumFeedbackTaps. Если вы задаете InitialWeights как вектор, длина вектора должна быть Касаниями N.

Настраиваемый: да

Типы данных: double

Коснитесь периода обновления веса в символах, заданных как положительное целое число. Эквалайзер обновляет веса касания после обработки этого количества символов.

Типы данных: double

Использование

Описание

пример

y = dfe(x,tsym) компенсирует входной сигнал x при помощи учебных символов tsym. Выход является компенсируемыми символами. Чтобы включить этот синтаксис, установите свойство Algorithm на 'LMS' или 'RLS'.

пример

y = dfe(x,tsym,tf) также задает учебный флаг tf. Системный объект запускает обучение когда tf изменения от false к true (в возрастающем ребре). Системный объект обучается до всех символов в tsym обрабатываются. Вход tsym проигнорирован когда tf false. Чтобы включить этот синтаксис, установите свойство Algorithm на 'LMS' или 'RLS' и свойство TrainingFlagInputPort к true.

y = dfe(x) компенсирует входной сигнал x. Чтобы включить этот синтаксис, установите свойство Algorithm на 'CMA'.

пример

y = dfe(x,aw) также задает, адаптирует флаг aw весов. Системный объект адаптирует веса касания эквалайзера когда aw true. Если aw false, Системный объект сохраняет веса неизменными. Чтобы включить этот синтаксис, установите свойство Algorithm на 'CMA' и свойство AdaptWeightsSource к 'Input port'.

[y,err] = dfe(___) также возвращает сигнал ошибки err использование входных параметров от любого из предыдущих синтаксисов.

пример

[y,err,weights] = dfe(___) также возвращает weights, веса касания от последнего обновления веса касания, с помощью входных параметров от любого из предыдущих синтаксисов.

Входные параметры

развернуть все

Входной сигнал, заданный как вектор-столбец. Длина вектора входного сигнала должна быть равна целочисленному кратному значение свойства InputSamplesPerSymbol. Для получения дополнительной информации смотрите, что Касание Символа Располагает с интервалами.

Типы данных: double
Поддержка комплексного числа: Да

Учебные символы, заданные как вектор-столбец длины, меньше чем или равной длине входа x. Вход tsym проигнорирован когда tf false.

Зависимости

Чтобы включить этот аргумент, установите свойство Algorithm на 'LMS' или 'RLS'.

Типы данных: double

Учебный флаг, заданный как true или false. Системный объект запускает обучение когда tf изменения от false к true (в возрастающем ребре). Системный объект обучается до всех символов в tsym обрабатываются. Вход tsym проигнорирован когда tf false.

Зависимости

Чтобы включить этот аргумент, установите свойство Algorithm на 'LMS' или 'RLS' и свойство TrainingFlagInputPort к true.

Типы данных: логический

Адаптируйте флаг весов, заданный как true или false. Если aw true, Системный объект адаптирует веса. Если aw false, Системный объект сохраняет веса неизменными.

Зависимости

Чтобы включить этот аргумент, установите свойство Algorithm на 'CMA' и свойство AdaptWeightsSource к 'Input port'.

Типы данных: логический

Выходные аргументы

развернуть все

Компенсируемые символы, возвращенные как вектор-столбец, который имеет ту же длину как входной сигнал x.

Сигнал ошибки, возвращенный как вектор-столбец, который имеет ту же длину как входной сигнал x.

Коснитесь весов, возвращенных как вектор-столбец, который имеет элементы Касаний N. Касания N равны сумме значений свойств NumForwardTaps и NumFeedbackTaps. weights содержит веса касания от последнего обновления веса касания.

Функции объекта

Чтобы использовать объектную функцию, задайте Системный объект как первый входной параметр. Например, чтобы выпустить системные ресурсы Системного объекта под названием obj, используйте этот синтаксис:

release(obj)

развернуть все

isLockedОпределите, используется ли Системный объект
cloneСоздайте объект дублированной системы
infoХарактеристическая информация об объекте эквалайзера
maxstepМаксимальный размер шага для сходимости эквалайзера LMS
mmseweightsЛинейный эквалайзер MMSE касается весов
stepЗапустите алгоритм Системного объекта
releaseВысвободите средства и позвольте изменения в значениях свойств Системного объекта и введите характеристики
resetСбросьте внутренние состояния Системного объекта

Примеры

развернуть все

Создайте модулятор BPSK и Систему эквалайзера object™, задав обратную связь решения эквалайзер LMS, имеющий восемь прямых касаний, пять касаний обратной связи и размер шага 0,03.

bpsk = comm.BPSKModulator;
eqdfe_lms = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
    'NumForwardTaps',8,'NumFeedbackTaps',5,'StepSize',0.03);

Измените ссылочный индекс касания эквалайзера.

eqdfe_lms.ReferenceTap = 4;

Создайте набор тестовых данных. Получите данные путем свертки к сигналу.

x = bpsk(randi([0 1],1000,1));
rxsig = conv(x,[1 0.8 0.3]);

Используйте maxstep найти максимальный разрешенный размер шага.

mxStep = maxstep(eqdfe_lms,rxsig)
mxStep = 0.1028

Компенсируйте полученный сигнал. Используйте первые 200 символов в качестве обучающей последовательности.

y = eqdfe_lms(rxsig,x(1:200));

Примените эквализацию обратной связи решения с помощью алгоритма наименьшее количество средних квадратичных (LMS), чтобы восстановиться, символы QPSK прошли через задержанный многопутевой канал AWGN.

Инициализируйте переменные симуляции.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
chtaps = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];

Сгенерируйте модулируемые QPSK символы. Примените задержанную многопутевую фильтрацию канала и нарушения AWGN к символам.

data = randi([0 M-1], numSymbols, 1);
tx = pskmod(data, M, pi/4);
rx = awgn(filter(chtaps,1,tx),25,'measured');

Создайте Системный объект эквалайзера обратной связи решения и отобразите настройку по умолчанию. Настройте ссылочное касание к 1. Проверяйте максимальный разрешенный размер шага. Компенсируйте символы, которым повреждают.

eq = comm.DecisionFeedbackEqualizer
eq = 
  comm.DecisionFeedbackEqualizer with properties:

                Algorithm: 'LMS'
           NumForwardTaps: 5
          NumFeedbackTaps: 3
                 StepSize: 0.0100
            Constellation: [1x4 double]
             ReferenceTap: 3
               InputDelay: 0
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: true
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

eq.ReferenceTap = 1;

mxStep = maxstep(eq,rx)
mxStep = 0.2141
[y,err,weights] = eq(rx,tx(1:numTrainingSymbols));

Постройте созвездие которым повреждают и компенсируемых символов.

constell = comm.ConstellationDiagram('NumInputPorts',2);
constell(rx,y)

Постройте сигнал ошибки эквалайзера и вычислите величину вектора ошибок компенсируемых символов.

plot(abs(err))
grid on; xlabel('Symbols'); ylabel('|e|')

errevm = comm.EVM;
evm = errevm(tx,y)
evm = 10.1621

Постройте веса касания эквалайзера.

subplot(3,1,1); stem(real(weights)); ylabel('real(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
title('Equalizer Tap Weights')
subplot(3,1,2); stem(imag(weights)); ylabel('imag(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
subplot(3,1,3); stem(abs(weights)); ylabel('abs(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)

Продемонстрируйте, что эквализация обратной связи решения с помощью алгоритма наименьшее количество средних квадратичных (LMS), чтобы восстановить символы QPSK прошла через канал AWGN. Примените различные планы подготовки эквалайзера и покажите ошибочную величину символа.

Системный Setup

Симулируйте модулируемую QPSK систему, удовлетворяющую AWGN. Передайте пакеты, состоявшие из 200 учебных символов и 1 800 случайных символов данных. Сконфигурируйте обратную связь решения эквалайзер LMS, чтобы восстановить пакетные данные.

M = 4;
numTrainSymbols = 200;
numDataSymbols = 1800;
SNR = 20;
trainingSymbols = pskmod(randi([0 M-1],numTrainSymbols,1),M,pi/4);
numPkts = 10;
dfeq = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
    'NumForwardTaps',5,'NumFeedbackTaps',4,'ReferenceTap',3,'StepSize',0.01);

Обучите эквалайзер в начале каждого пакета со сбросом

Процесс каждый пакет с помощью предварительно ожидаемых учебных символов. Сбросьте эквалайзер после обработки каждого пакета. При сбросе эквалайзера после того, как каждый пакет обеспечивает эквалайзер, чтобы обучить касания без априорного знания. Графики сигнала ошибки эквалайзера для первого, второго, и последнего пакета показывают более высокие ошибки символа в начале каждого пакета.

jj = 1;
figure
for ii = 1:numPkts
    b = randi([0 M-1],numDataSymbols,1);
    dataSym = pskmod(b,M,pi/4);
    packet = [trainingSymbols;dataSym];
    rx = awgn(packet,SNR);
    [~,err] = dfeq(rx,trainingSymbols);
    reset(dfeq)
    if (ii ==1 || ii == 2 ||ii == numPkts)
        subplot(3,1,jj)
        plot(abs(err))
        ylim([0 1])
        title(['Packet # ',num2str(ii)])
        xlabel('Symbols');
        ylabel('Error Magnitude');
        grid on;
        jj = jj+1;
    end
end

Обучите эквалайзер в начале каждого пакета без сброса

Процесс каждый пакет с помощью предварительно ожидаемых учебных символов. Не сбрасывайте эквалайзер после того, как каждый пакет будет обработан. Не сбрасывая после каждого пакета, эквалайзер сохраняет веса касания от учебных предшествующих пакетов. Графики сигнала ошибки эквалайзера для первого, второго, и последнего пакета показывают, что после начальной подготовки на первом пакете, последующие пакеты имеют меньше ошибок символа в начале каждого пакета.

release(dfeq)
jj = 1;
figure
for ii = 1:numPkts
    b = randi([0 M-1],numDataSymbols,1);
    dataSym = pskmod(b,M,pi/4);
    packet = [trainingSymbols;dataSym];
    channel = 1;
    rx = awgn(packet*channel,SNR);
    [~,err] = dfeq(rx,trainingSymbols);
    if (ii ==1 || ii == 2 ||ii == numPkts)
        subplot(3,1,jj)
        plot(abs(err))
        ylim([0 1])
        title(['Packet # ',num2str(ii)])
        xlabel('Symbols');
        ylabel('Error Magnitude');
        grid on;
        jj = jj+1;
    end
end

Обучайте эквалайзер периодически

Системы с сигналами, удовлетворяющими изменяющимся во времени каналам, требуют, чтобы периодическое обучение эквалайзера обеспечить соединило изменения канала. Задайте систему, которая имеет 200 символов обучения каждым 1 800 символам данных. Между обучением эквалайзер не обновляет веса касания. Процессы эквалайзера 200 символов на пакет.

Rs = 1e6;
fd = 20;
spp = 200; % Symbols per packet
b = randi([0 M-1],numDataSymbols,1);
dataSym = pskmod(b,M,pi/4);
packet = [trainingSymbols; dataSym];
stream = repmat(packet,10,1);
tx = (0:length(stream)-1)'/Rs;
channel = exp(1i*2*pi*fd*tx);
rx = awgn(stream.*channel,SNR);

Установите AdaptAfterTraining свойство к false чтобы остановить эквалайзер касаются обновлений веса после учебной фазы.

release(dfeq)
dfeq.AdaptAfterTraining = false
dfeq = 
  comm.DecisionFeedbackEqualizer with properties:

                Algorithm: 'LMS'
           NumForwardTaps: 5
          NumFeedbackTaps: 4
                 StepSize: 0.0100
            Constellation: [1x4 double]
             ReferenceTap: 3
               InputDelay: 0
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: false
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

Компенсируйте данные, которым повреждают. Постройте угловую погрешность от канала, сигнала ошибки эквалайзера и сигнального созвездия. Когда канал варьируется, эквалайзер, выход не удаляет эффекты канала. Кроме того, выходное созвездие вращается из синхронизации, приводящей к битовым ошибкам.

[y,err] = dfeq(rx,trainingSymbols);

figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('Time (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(err))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel Without Retraining')

scatterplot(y)

Установите TrainingInputPort свойство к true сконфигурировать эквалайзер, чтобы переобучить касания, когда сообщено trainFlag входной параметр. Эквалайзер обучается только когда trainFlag true. После каждых 2 000 символов эквалайзер переобучает касания и сохраняет, соединяют изменения канала. Постройте угловую погрешность от канала, сигнала ошибки эквалайзера и сигнального созвездия. Когда канал варьируется, эквалайзер, выход удаляет эффекты канала. Кроме того, выходное созвездие не вращается из синхронизации, и битовые ошибки уменьшаются.

release(dfeq)
dfeq.TrainingFlagInputPort = true;
symbolCnt = 0;
numPackets = length(rx)/spp;
trainFlag = true;
trainingPeriod = 2000;
eVec = zeros(size(rx));
yVec = zeros(size(rx));
for p=1:numPackets
    [yVec((p-1)*spp+1:p*spp,1),eVec((p-1)*spp+1:p*spp,1)] = ...
        dfeq(rx((p-1)*spp+1:p*spp,1),trainingSymbols,trainFlag);
    symbolCnt = symbolCnt + spp;
    if symbolCnt >= trainingPeriod
        trainFlag = true;
        symbolCnt = 0;
    else
        trainFlag = false;
    end
end
figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('t (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(eVec))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel With Retraining')

scatterplot(yVec)

Симулируйте систему с задержкой между переданными символами и полученными выборками. Типичные системы имеют фильтры передатчика и получателя, которые приводят к задержке. Эта задержка должна составляться, чтобы синхронизировать систему. В этом примере системная задержка введена без передачи, и получите фильтры. Эквализация обратной связи решения, с помощью алгоритма наименьшее количество средних квадратичных (LMS), восстанавливает символы QPSK.

Инициализируйте переменные симуляции.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
mpChan = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
systemDelay = dsp.Delay(20);
snr = 24;

Сгенерируйте модулируемые QPSK символы. Примените многопутевую фильтрацию канала, системную задержку и AWGN к переданным символам.

data = randi([0 M-1],numSymbols,1);
tx = pskmod(data,M,pi/4); % OQPSK
delayedSym = systemDelay(filter(mpChan,1,tx));
rx = awgn(delayedSym,snr,'measured');

Создайте эквалайзер и Системные объекты EVM. Системный объект эквалайзера задает эквалайзер обратной связи решения с помощью LMS-алгоритма.

dfeq = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
    'NumForwardTaps',9,'NumFeedbackTaps',6,'ReferenceTap',5);
evm = comm.EVM('ReferenceSignalSource', ...
    'Estimated from reference constellation');

Компенсируйте, не настраивая входную задержку

Компенсируйте полученные символы.

[y1,err1,wts1] = dfeq(rx,tx(1:numTrainingSymbols,1));

Найдите задержку между полученными символами и переданными символами при помощи finddelay функция.

rxDelay = finddelay(tx,rx)
rxDelay = 20

Отобразите информацию об эквалайзере. Значение задержки указывает на задержку, введенную эквалайзером. Вычислите общую задержку как сумму rxDelay и задержка эквалайзера.

eqInfo = info(dfeq)
eqInfo = struct with fields:
    Latency: 4

totalDelay = rxDelay + eqInfo.Latency;

Пока эквалайзер, выход сходится, коэффициент ошибок символа, не высок. Постройте вывод ошибок, err1, определить, когда компенсируемый выход сходится.

plot(abs(err1))
xlabel('Symbols')
ylabel('Error Magnitude')
title('Equalizer Error Signal')

График показывает чрезмерные ошибки для первых 2 000 символов. При демодуляции символов и вычислительных ошибок символа, объясните не сходившийся выход и системную задержку между эквалайзером выход и переданными символами.

dataRec1 = pskdemod(y1(2000+totalDelay:end),M,pi/4);
symErrWithDelay = symerr(data(2000:end-totalDelay),dataRec1)
symErrWithDelay = 6001
evmWithDelay = evm(y1)
evmWithDelay = 25.6868

Коэффициент ошибок и EVM высоки, потому что получить задержка не составлялась в Системном объекте эквалайзера.

Настройте входную задержку эквалайзера обратной связи решения

Компенсируйте полученные данные при помощи значения задержки, чтобы установить InputDelay свойство. Начиная с InputDelay ненастраиваемое свойство, необходимо выпустить dfeq Системный объект, чтобы реконфигурировать InputDelay свойство. Компенсируйте полученные символы.

release(dfeq)
dfeq.InputDelay = rxDelay
dfeq = 
  comm.DecisionFeedbackEqualizer with properties:

                Algorithm: 'LMS'
           NumForwardTaps: 9
          NumFeedbackTaps: 6
                 StepSize: 0.0100
            Constellation: [1x4 double]
             ReferenceTap: 5
               InputDelay: 20
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: true
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

[y2,err2,wts2] = dfeq(rx,tx(1:numTrainingSymbols,1));

Постройте веса касания и компенсируемую ошибочную величину. Диаграмма стебель-листья показывает, что веса касания эквалайзера до и после системной задержки удалены. 2D график показывает более медленную сходимость эквалайзера для задержанного сигнала, по сравнению с сигналом с удаленной задержкой.

subplot(2,1,1)
stem([real(wts1),real(wts2)])
xlabel('Taps')
ylabel('Tap Weight Real')
legend('rxDelayed','rxDelayRemoved')
grid on
subplot(2,1,2)
stem([imag(wts1),imag(wts2)])
xlabel('Taps')
ylabel('Tap Weight Imaginary')
legend('rxDelayed','rxDelayRemoved')
grid on

figure
plot([abs(err1),abs(err2)])
xlabel('Symbols')
ylabel('Error Magnitude')
legend('rxDelayed','rxDelayRemoved')
grid on

Постройте вывод ошибок компенсируемых сигналов, rxDelayed и rxDelayRemoved. Для сигнала, которому удалили задержку, эквалайзер сходится во время 1 000 периодов подготовки символа. Когда демодуляция символов и вычислительных ошибок символа, чтобы составлять не сходившийся выход и системную задержку между эквалайзером выход и переданными символами, пропускает первые 500 символов. Реконфигурирование эквалайзера, чтобы составлять системную задержку включает лучшую эквализацию сигнала и уменьшает ошибки символа и EVM.

eqInfo = info(dfeq)
eqInfo = struct with fields:
    Latency: 4

totalDelay = rxDelay + eqInfo.Latency;
dataRec2 = pskdemod(y2(500+totalDelay:end),M,pi/4);
symErrDelayRemoved = symerr(data(500:end-totalDelay),dataRec2)
symErrDelayRemoved = 0
evmDelayRemoved = evm(y2(500+totalDelay:end))
evmDelayRemoved = 7.5147

Восстановите символы QPSK с эквалайзером решения, с помощью постоянного алгоритма модуля (CMA) и основанного на EVM обучения касаний. При использовании слепых алгоритмов эквалайзера, таких как CMA, можно обучить касания эквалайзера с помощью AdaptWeights свойство запуститься и остановить обучение. Используйте функции помощника, чтобы сгенерировать графики и применить коррекцию фазы.

Инициализируйте системные переменные.

rng(123456);
M = 4; % QPSK
numSymbols = 100;
numPackets = 5000;
refTap = 3;
nFwdTaps = 5;
nFdbkTaps = 4;
ttlTaps = nFwdTaps + nFdbkTaps;
raylChan = comm.RayleighChannel('PathDelays',[0 1], ...
    'AveragePathGains',[0 -12],'MaximumDopplerShift',1e-5);
SNR = 50;
adaptWeights = true;

Создайте эквалайзер и Системные объекты EVM. Системный объект эквалайзера задает эквалайзер обратной связи решения с помощью CMA адаптивный алгоритм. Вызовите функцию помощника, чтобы инициализировать графики фигуры.

dfeq = comm.DecisionFeedbackEqualizer('Algorithm','CMA', ...
    'NumForwardTaps',nFwdTaps,'NumFeedbackTaps',nFdbkTaps,'ReferenceTap',refTap, ...
    'StepSize',0.03,'AdaptWeightsSource','Input port')
dfeq = 
  comm.DecisionFeedbackEqualizer with properties:

                Algorithm: 'CMA'
           NumForwardTaps: 5
          NumFeedbackTaps: 4
                 StepSize: 0.0300
            Constellation: [1x4 double]
             ReferenceTap: 3
    InputSamplesPerSymbol: 1
       AdaptWeightsSource: 'Input port'
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

info(dfeq)
ans = struct with fields:
    Latency: 2

evm = comm.EVM('ReferenceSignalSource', ...
    'Estimated from reference constellation');
[errPlot,evmPlot,scatSym,adaptState] = initFigures(numPackets,ttlTaps);

Цикл эквализации

Выполните эти шаги, чтобы реализовать цикл эквализации.

  1. Сгенерируйте пакеты данных OQPSK.

  2. Примените Релеевское замирание и AWGN к данным о передаче.

  3. Примените эквализацию к полученным данным и коррекцию фазы к эквалайзеру выход.

  4. Оцените EVM и переключите adaptWeights отметьте к true или false на основе уровня EVM.

  5. Обновите графики фигуры.

for p=1:numPackets
    data = randi([0 M-1],numSymbols,1);
    tx = pskmod(data,M,pi/4);
    rx = awgn(raylChan(tx),SNR);
    rxDelay = finddelay(rx,tx);
    [y,err,wts] = dfeq(rx,adaptWeights);
    y = phaseCorrection(y);
    evmEst = evm(y);
    adaptWeights = (evmEst > 20);
    
    updateFigures(errPlot,evmPlot,scatSym,adaptState, ...
        wts,y(end),evmEst,adaptWeights,p,numPackets)
end

rxDelay
rxDelay = 0

Графики фигуры показывают, что, когда EVM варьируется, переключатели эквалайзера в и из направленного на решение режима адаптации веса.

Функции помощника

Эта функция помощника инициализирует фигуры, которые показывают квадратический график результатов симуляции.

function [errPlot,evmPlot,scatter,adaptState] = initFigures(numPkts,ttlTaps)
yVec = nan(numPkts,1);
evmVec = nan(numPkts,1);
wVec = zeros(ttlTaps,1);
adaptVec = nan(numPkts,1);

figure
subplot(2,2,1)
evmPlot = stem(wVec);
grid on; axis([1 ttlTaps 0 1.8])
xlabel('Taps'); ylabel('|Weights|'); title('Tap Weight Magnitude')

subplot(2,2,2)
scatter = plot(yVec, '.');
axis square; axis([-1.2 1.2 -1.2 1.2]); grid on
xlabel('In-phase'); ylabel('Quadrature'); title('Scatter Plot');
subplot(2,2,3)
adaptState = plot(adaptVec);
grid on; axis([0 numPkts -0.2 1.2])
ylabel('Training'); xlabel('Symbols'); title('Adapt Weights Signal')
subplot(2,2,4)
errPlot = plot(evmVec);
grid on; axis([1 numPkts 0 100])
xlabel('Symbols'); ylabel('EVM (%)'); title('EVM')
end

Эта функция помощника обновляет фигуры.

function updateFigures(errPlot,evmPlot,scatSym, ...
    adaptState,w,y,evmEst,adaptWts,p,numFrames)
persistent yVec evmVec adaptVec

if p == 1
    yVec = nan(numFrames,1);
    evmVec = nan(numFrames,1);
    adaptVec = nan(numFrames,1);
end

yVec(p) = y;
evmVec(p) = evmEst;
adaptVec(p) = adaptWts;

errPlot.YData = abs(evmVec);
evmPlot.YData = abs(w);
scatSym.XData = real(yVec);
scatSym.YData = imag(yVec);
adaptState.YData = adaptVec;
drawnow limitrate
end

Эта функция помощника применяет коррекцию фазы.

function y = phaseCorrection(y)
a = angle(y((real(y) > 0) & (imag(y) > 0)));
a(a < 0.1) = a(a < 0.1) + pi/2;
theta = mean(a) - pi/4;
y = y * exp(-1i*theta);
end

Восстановите символы QPSK в исчезающих средах с эквалайзером обратной связи решения, с помощью алгоритма наименьшее количество средних квадратичных (LMS). Используйте reset возразите функции, чтобы компенсировать независимые пакеты. Используйте функции помощника, чтобы сгенерировать графики. Этот пример также показывает основанную на символе обработку и основанную на системе координат обработку.

Настройка

Инициализируйте системные переменные, создайте Системный объект эквалайзера и инициализируйте фигуры графика.

M = 4; % QPSK
numSym = 1000;
numTrainingSym = 100;
numPackets = 5;
refTap = 5;
nFwdTaps = 9;
nFdbkTaps = 4;
ttlTaps = nFwdTaps + nFdbkTaps;
stepsz = 0.01;
ttlNumSym = numSym + numTrainingSym;
raylChan = comm.RayleighChannel('PathDelays',[0 1], ...
    'AveragePathGains',[0 -9], ...
    'MaximumDopplerShift',0, ...
    'PathGainsOutputPort',true);
SNR = 35;
rxVec = zeros(ttlNumSym,numPackets);
txVec = zeros(ttlNumSym,numPackets);
yVec = zeros(ttlNumSym,1);
eVec = zeros(ttlNumSym,1);

dfeq1 = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
    'NumForwardTaps',nFwdTaps,'NumFeedbackTaps',nFdbkTaps,'ReferenceTap',refTap, ...
    'StepSize',stepsz,'TrainingFlagInputPort',true);

[errPlot,wStem,hStem,scatPlot] = initFigures(ttlNumSym,ttlTaps, ...
    raylChan.AveragePathGains);

Основанная на символе обработка

Для основанной на символе обработки обеспечьте один символ во входе эквалайзера. Сбросьте состояние эквалайзера и канал после обработки каждого пакета.

for p = 1:numPackets
    trainingFlag = true;
    for q=1:ttlNumSym
        data = randi([0 M-1],1,1);
        tx = pskmod(data,M,pi/4);
        [xc,pg] = raylChan(tx);
        rx = awgn(xc,25);
        [y,err,wts] = dfeq1(rx,tx,trainingFlag);       

Отключите обучение после обработки numTrainingSym учебные символы.

        if q == numTrainingSym
            trainingFlag = false;
        end        
        updateFigures(errPlot,wStem,hStem,scatPlot,err,wts,y,pg,q,ttlNumSym);
        txVec(q,p) = tx;
        rxVec(q,p) = rx;
    end 

После обработки каждого пакета сброс Системный объект канала, чтобы получить новую реализацию канала касается и Системный объект эквалайзера, чтобы восстановить веса касаний по умолчанию.

    reset(raylChan)
    reset(dfeq1)
end

Основанная на пакете обработка

Для основанной на пакете обработки обеспечьте один пакет во входе эквалайзера. Каждый пакет содержит ttlNumSym символы. Поскольку учебная длительность меньше пакетной длины, вы не должны задавать вход начинать-обучения.

yVecPkt = zeros(ttlNumSym,numPackets);
errVecPkt = zeros(ttlNumSym,numPackets);
wgtVecPkt = zeros(ttlTaps,numPackets);
dfeq2 = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
    'NumForwardTaps',nFwdTaps,'NumFeedbackTaps',nFdbkTaps,'ReferenceTap',refTap, ...
    'StepSize',stepsz);
for p = 1:numPackets
    [yVecPkt(:,p),errVecPkt(:,p),wgtVecPkt(:,p)] = ...
        dfeq2(rxVec(:,p),txVec(1:numTrainingSym,p));
    for q=1:ttlNumSym
        updateFigures(errPlot,wStem,hStem,scatPlot, ...
            errVecPkt(q,p),wgtVecPkt(:,p),yVecPkt(q,p),pg,q,ttlNumSym);
    end

После обработки каждого пакета сброс Системный объект канала, чтобы получить новую реализацию канала касается и Системный объект эквалайзера, чтобы восстановить веса касаний по умолчанию.

    reset(raylChan)
    reset(dfeq2)
end

Функции помощника

Эта функция помощника инициализирует фигуры.

function [errPlot,wStem,hStem,scatPlot] = initFigures(ttlNumSym,ttlTap,pg)
yVec = nan(ttlNumSym,1);
eVec = nan(ttlNumSym,1);
wVec = zeros(ttlTap,1);
figure;
subplot(2,2,1);
wStem = stem(wVec);
axis([1 ttlTap 0 1.8]); grid on
xlabel('Taps'); ylabel('|Weights|'); title('Tap Weight Magnitude')
subplot(2,2,2);
hStem = stem([0 abs(pg) 0]);
grid on;
xlabel('Taps'); ylabel('|Path Gain|'); title('Channel Path Gain Magnitude')
subplot(2,2,3);
errPlot = plot(eVec);
axis([1 ttlNumSym 0 1.2]); grid on
xlabel('Symbols'); ylabel('|Error Magnitude|'); title('Error Magnitude')
subplot(2,2,4);
scatPlot = plot(yVec,'.');
axis square; axis([-1.2 1.2 -1.2 1.2]); grid on;
xlabel('In-phase'); ylabel('Quadrature'); title(sprintf('Scatter Plot'));
end

Эта функция помощника обновляет фигуры.

function updateFigures(errPlot,wStem,hStem,scatPlot, ...
    err,wts,y,pg,p,ttlNumSym)
persistent yVec eVec
if p == 1
    yVec = nan(ttlNumSym,1);
    eVec = nan(ttlNumSym,1);
end
yVec(p) = y;
eVec(p) = abs(err);
errPlot.YData = abs(eVec);
wStem.YData = abs(wts);
hStem.YData = [0 abs(pg) 0];
scatPlot.XData = real(yVec);
scatPlot.YData = imag(yVec);
drawnow limitrate
end

Больше о

развернуть все

Алгоритмы

развернуть все

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Введенный в R2019a

Для просмотра документации необходимо авторизоваться на сайте