Сверточная нейронная сеть Pretrained ResNet-101
ResNet-101 является сверточной нейронной сетью, которая обучена больше чем на миллионе изображений от базы данных ImageNet [1]. Сеть является 101 слоем глубоко и может классифицировать изображения в 1 000 категорий объектов, таких как клавиатура, мышь, карандаш и многие животные. В результате сеть изучила богатые представления функции для широкого спектра изображений. Сеть имеет входной размер изображений 224 224. Для большего количества предварительно обученных сетей в MATLAB® смотрите Предварительно обученные Глубокие нейронные сети.
Можно использовать classify
классифицировать новые изображения с помощью модели ResNet-101. Выполните шаги, Классифицируют Изображение Используя GoogLeNet и заменяют GoogLeNet на ResNet-101.
Чтобы переобучить сеть на новой задаче классификации, выполните шаги, Обучают Нейронную сеть для глубокого обучения Классифицировать Новые Изображения и загружать ResNet-101 вместо GoogLeNet.
[1] ImageNet. http://www.image-net.org
[2] Он, Kaiming, Сянюй Чжан, Шаоцин Жэнь и Цзянь Сунь. "Глубокая невязка, учащаяся для распознавания изображений". В Продолжениях конференции по IEEE по компьютерному зрению и распознаванию образов, стр 770-778. 2016.
DAGNetwork
| alexnet
| densenet201
| googlenet
| inceptionresnetv2
| inceptionv3
| layerGraph
| plot
| resnet18
| resnet50
| squeezenet
| trainNetwork
| vgg16
| vgg19