Подходящие параметры Байесовой модели линейной регрессии к данным
Чтобы выполнить выбор переменного предиктора для Байесовой модели линейной регрессии, смотрите estimate.
возвращает модель, которая характеризует объединенные апостериорные распределения β и σ 2 из Байесовой модели линейной регрессии. PosteriorMdl = estimate(PriorMdl,X,y)PriorMdl задает объединенное предшествующее распределение параметров и структуру модели линейной регрессии. X данные о предикторе и y данные об ответе. PriorMdl и PosteriorMdl не может быть тот же тип объекта.
Произвести PosteriorMdl, estimate функционируйте обновляет предшествующее распределение с информацией о параметрах, которые это получает из данных.
NaNs в данных указывают на отсутствующие значения, который estimate удаляет при помощи мудрого списком удаления.
задает дополнительные опции с помощью одного или нескольких аргументов пары "имя-значение". Например, можно задать значение или для β или для σ 2, чтобы оценить апостериорное распределение conditional одного параметра, учитывая заданное значение другого параметра.PosteriorMdl = estimate(PriorMdl,X,y,Name,Value)
Если вы задаете Beta или Sigma2 аргумент пары "имя-значение", затем PosteriorMdl и PriorMdl равны.
[ использование любая из комбинаций входных аргументов в предыдущих синтаксисах, чтобы возвратить таблицу, которая содержит следующее для каждого параметра: следующее среднее и стандартное отклонение, 95%-й вероятный интервал, апостериорная вероятность, что параметр больше 0, и описание апостериорного распределения (если вы существуете). Кроме того, таблица содержит следующую ковариационную матрицу β и σ 2. Если вы задаете PosteriorMdl,Summary]
= estimate(___)Beta или Sigma2 аргумент пары "имя-значение", затем estimate возвращает условные следующие оценки.
Рассмотрите модель, которая предсказывает экономию топлива (в MPG) автомобиля, учитывая его объем двигателя и вес.
Загрузите carsmall набор данных.
load carsmall
x = [Displacement Weight];
y = MPG;Экономия топлива регресса на объем двигателя и вес, включая прерывание, чтобы получить оценки обычных наименьших квадратов (OLS).
Mdl = fitlm(x,y)
Mdl =
Linear regression model:
y ~ 1 + x1 + x2
Estimated Coefficients:
Estimate SE tStat pValue
__________ _________ _______ __________
(Intercept) 46.925 2.0858 22.497 6.0509e-39
x1 -0.014593 0.0082695 -1.7647 0.080968
x2 -0.0068422 0.0011337 -6.0353 3.3838e-08
Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 4.09
R-squared: 0.747, Adjusted R-Squared: 0.741
F-statistic vs. constant model: 134, p-value = 7.22e-28
Mdl.MSE
ans = 16.7100
Создайте значение по умолчанию, рассейте предшествующее распределение для одного предиктора.
p = 2; PriorMdl = bayeslm(p);
PriorMdl diffuseblm объект модели.
Используйте опции по умолчанию, чтобы оценить апостериорное распределение.
PosteriorMdl = estimate(PriorMdl,x,y);
Method: Analytic posterior distributions
Number of observations: 94
Number of predictors: 3
| Mean Std CI95 Positive Distribution
--------------------------------------------------------------------------------
Intercept | 46.9247 2.1091 [42.782, 51.068] 1.000 t (46.92, 2.09^2, 91)
Beta(1) | -0.0146 0.0084 [-0.031, 0.002] 0.040 t (-0.01, 0.01^2, 91)
Beta(2) | -0.0068 0.0011 [-0.009, -0.005] 0.000 t (-0.01, 0.00^2, 91)
Sigma2 | 17.0855 2.5905 [12.748, 22.866] 1.000 IG(45.50, 0.0013)
PosteriorMdl conjugateblm объект модели.
Следующие средние значения и содействующие оценки OLS почти идентичны. Кроме того, следующие стандартные отклонения и стандартные погрешности OLS почти идентичны. Следующее среднее значение Sigma2 близко к среднеквадратической ошибке (MSE) OLS.
Рассмотрите модель многофакторной линейной регрессии, которая предсказывает США действительный валовой национальный продукт (GNPR) использование линейной комбинации общей занятости (E) и действительная заработная плата (WR).

Для всех
,
серия независимых Гауссовых воздействий со средним значением 0 и отклонение
. Примите эти предшествующие распределения:
3-D t распределение с 10 степенями свободы для каждого компонента, корреляционная матрица C, местоположение ct, и масштабируйте st.
, с формой
и шкалой
.
bayeslm обработки эти предположения и вероятность данных, как будто следующее соответствие аналитически тяжело.
Объявите функцию MATLAB® что:
Принимает значения
и
вместе в вектор-столбце и принимает значения гиперпараметров
Возвращает значение объединенного предшествующего распределения
, учитывая значения
и 
function logPDF = priorMVTIG(params,ct,st,dof,C,a,b) %priorMVTIG Log density of multivariate t times inverse gamma % priorMVTIG passes params(1:end-1) to the multivariate t density % function with dof degrees of freedom for each component and positive % definite correlation matrix C. priorMVTIG returns the log of the product of % the two evaluated densities. % % params: Parameter values at which the densities are evaluated, an % m-by-1 numeric vector. % % ct: Multivariate t distribution component centers, an (m-1)-by-1 % numeric vector. Elements correspond to the first m-1 elements % of params. % % st: Multivariate t distribution component scales, an (m-1)-by-1 % numeric (m-1)-by-1 numeric vector. Elements correspond to the % first m-1 elements of params. % % dof: Degrees of freedom for the multivariate t distribution, a % numeric scalar or (m-1)-by-1 numeric vector. priorMVTIG expands % scalars such that dof = dof*ones(m-1,1). Elements of dof % correspond to the elements of params(1:end-1). % % C: Correlation matrix for the multivariate t distribution, an % (m-1)-by-(m-1) symmetric, positive definite matrix. Rows and % columns correspond to the elements of params(1:end-1). % % a: Inverse gamma shape parameter, a positive numeric scalar. % % b: Inverse gamma scale parameter, a positive scalar. % beta = params(1:(end-1)); sigma2 = params(end); tVal = (beta - ct)./st; mvtDensity = mvtpdf(tVal,C,dof); igDensity = sigma2^(-a-1)*exp(-1/(sigma2*b))/(gamma(a)*b^a); logPDF = log(mvtDensity*igDensity); end
Создайте анонимную функцию, которая действует как priorMVTIG, но принимает значения параметров только и содержит гиперзначения параметров, зафиксированные в произвольно выбранных значениях.
prednames = ["E" "WR"]; p = numel(prednames); numcoeff = p + 1; rng(1); % For reproducibility dof = 10; V = rand(numcoeff); Sigma = 0.5*(V + V') + numcoeff*eye(numcoeff); st = sqrt(diag(Sigma)); C = diag(1./st)*Sigma*diag(1./st); ct = rand(numcoeff,1); a = 10*rand; b = 10*rand; logPDF = @(params)priorMVTIG(params,ct,st,dof,C,a,b);
Создайте пользовательскую объединенную предшествующую модель для параметров линейной регрессии. Задайте количество предикторов p. Кроме того, задайте указатель на функцию для priorMVTIG и имена переменных.
PriorMdl = bayeslm(p,'ModelType','custom','LogPDF',logPDF,... 'VarNames',prednames);
PriorMdl customblm Байесов объект модели линейной регрессии, представляющий предшествующее распределение коэффициентов регрессии и отклонения воздействия.
Загрузите набор данных Нельсона-Плоссера. Создайте переменные для ряда предиктора и ответа.
load Data_NelsonPlosser X = DataTable{:,PriorMdl.VarNames(2:end)}; y = DataTable{:,"GNPR"};
Оцените крайние апостериорные распределения
и
использование сэмплера Гамильтонова Монте-Карло (HMC). Задайте выборки рисунка 10,000, и электротермотренировка 1 000 чертит.
PosteriorMdl = estimate(PriorMdl,X,y,'Sampler','hmc','NumDraws',1e4,... 'Burnin',1e3);
Method: MCMC sampling with 10000 draws
Number of observations: 62
Number of predictors: 3
| Mean Std CI95 Positive Distribution
------------------------------------------------------------------------------
Intercept | -3.7453 5.6656 [-16.096, 6.164] 0.243 Empirical
E | -0.0056 0.0006 [-0.007, -0.004] 0.000 Empirical
WR | 15.2497 0.7697 [13.744, 16.736] 1.000 Empirical
Sigma2 | 1289.5491 242.0075 [907.338, 1832.866] 1.000 Empirical
PosteriorMdl empiricalblm объект модели, хранящий ничьи от апостериорных распределений.
Просмотрите график трассировки и график ACF ничьих от следующего из
(например), и отклонение воздействия. Не стройте электротермотренировку.
figure; subplot(2,1,1) plot(PosteriorMdl.BetaDraws(2,1001:end)); title(['Trace Plot ' char(8212) ' \beta_1']); xlabel('MCMC Draw') ylabel('Simulation Index') subplot(2,1,2) autocorr(PosteriorMdl.BetaDraws(2,1001:end)) figure; subplot(2,1,1) plot(PosteriorMdl.Sigma2Draws(1001:end)); title(['Trace Plot ' char(8212) ' Disturbance Variance']); xlabel('MCMC Draw') ylabel('Simulation Index') subplot(2,1,2) autocorr(PosteriorMdl.Sigma2Draws(1001:end))


Выборка MCMC отклонения воздействия, кажется, смешивается хорошо.
Считайте модель регрессии в Оценке Следующей Используя гамильтонов Сэмплер Монте-Карло. Этот пример использует те же данные и контекст, но принимает рассеянную предшествующую модель вместо этого.
Создайте рассеянную предшествующую модель для параметров линейной регрессии. Задайте количество предикторов p и имена коэффициентов регрессии.
p = 3; PriorMdl = bayeslm(p,'ModelType','diffuse','VarNames',["IPI" "E" "WR"])
PriorMdl =
diffuseblm with properties:
NumPredictors: 3
Intercept: 1
VarNames: {4x1 cell}
| Mean Std CI95 Positive Distribution
-----------------------------------------------------------------------------
Intercept | 0 Inf [ NaN, NaN] 0.500 Proportional to one
IPI | 0 Inf [ NaN, NaN] 0.500 Proportional to one
E | 0 Inf [ NaN, NaN] 0.500 Proportional to one
WR | 0 Inf [ NaN, NaN] 0.500 Proportional to one
Sigma2 | Inf Inf [ NaN, NaN] 1.000 Proportional to 1/Sigma2
PriorMdl diffuseblm объект модели.
Загрузите набор данных Нельсона-Плоссера. Создайте переменные для ряда предиктора и ответа.
load Data_NelsonPlosser X = DataTable{:,PriorMdl.VarNames(2:end)}; y = DataTable{:,'GNPR'};
Оцените условное апостериорное распределение учитывая данные и это , и возвратите сводную таблицу оценки, чтобы получить доступ к оценкам.
[Mdl,SummaryBeta] = estimate(PriorMdl,X,y,'Sigma2',2);Method: Analytic posterior distributions
Conditional variable: Sigma2 fixed at 2
Number of observations: 62
Number of predictors: 4
| Mean Std CI95 Positive Distribution
--------------------------------------------------------------------------------
Intercept | -24.2536 1.8696 [-27.918, -20.589] 0.000 N (-24.25, 1.87^2)
IPI | 4.3913 0.0301 [ 4.332, 4.450] 1.000 N (4.39, 0.03^2)
E | 0.0011 0.0001 [ 0.001, 0.001] 1.000 N (0.00, 0.00^2)
WR | 2.4682 0.0743 [ 2.323, 2.614] 1.000 N (2.47, 0.07^2)
Sigma2 | 2 0 [ 2.000, 2.000] 1.000 Fixed value
estimate отображает сводные данные условного апостериорного распределения . Поскольку фиксируется в 2 во время оценки, выводы на ней тривиальны.
Извлеките средний вектор и ковариационную матрицу условного выражения, следующего из из сводной таблицы оценки.
condPostMeanBeta = SummaryBeta.Mean(1:(end - 1))
condPostMeanBeta = 4×1
-24.2536
4.3913
0.0011
2.4682
CondPostCovBeta = SummaryBeta.Covariances(1:(end - 1),1:(end - 1))
CondPostCovBeta = 4×4
3.4956 0.0350 -0.0001 0.0241
0.0350 0.0009 -0.0000 -0.0013
-0.0001 -0.0000 0.0000 -0.0000
0.0241 -0.0013 -0.0000 0.0055
Отобразите Mdl.
Mdl
Mdl =
diffuseblm with properties:
NumPredictors: 3
Intercept: 1
VarNames: {4x1 cell}
| Mean Std CI95 Positive Distribution
-----------------------------------------------------------------------------
Intercept | 0 Inf [ NaN, NaN] 0.500 Proportional to one
IPI | 0 Inf [ NaN, NaN] 0.500 Proportional to one
E | 0 Inf [ NaN, NaN] 0.500 Proportional to one
WR | 0 Inf [ NaN, NaN] 0.500 Proportional to one
Sigma2 | Inf Inf [ NaN, NaN] 1.000 Proportional to 1/Sigma2
Поскольку estimate вычисляет условное апостериорное распределение, оно возвращает исходную предшествующую модель, не следующее, в первом положении списка выходных аргументов.
Оцените условные апостериорные распределения учитывая, что condPostMeanBeta.
[~,SummarySigma2] = estimate(PriorMdl,X,y,'Beta',condPostMeanBeta);Method: Analytic posterior distributions
Conditional variable: Beta fixed at -24.2536 4.3913 0.00112035 2.46823
Number of observations: 62
Number of predictors: 4
| Mean Std CI95 Positive Distribution
--------------------------------------------------------------------------------
Intercept | -24.2536 0 [-24.254, -24.254] 0.000 Fixed value
IPI | 4.3913 0 [ 4.391, 4.391] 1.000 Fixed value
E | 0.0011 0 [ 0.001, 0.001] 1.000 Fixed value
WR | 2.4682 0 [ 2.468, 2.468] 1.000 Fixed value
Sigma2 | 48.5138 9.0088 [33.984, 69.098] 1.000 IG(31.00, 0.00069)
estimate отображает сводные данные условного апостериорного распределения . Поскольку фиксируется к condPostMeanBeta во время оценки выводы на нем тривиальны.
Извлеките среднее значение и отклонение условного выражения, следующего из из сводной таблицы оценки.
condPostMeanSigma2 = SummarySigma2.Mean(end)
condPostMeanSigma2 = 48.5138
CondPostVarSigma2 = SummarySigma2.Covariances(end,end)
CondPostVarSigma2 = 81.1581
Считайте модель регрессии в Оценке Следующей Используя гамильтонов Сэмплер Монте-Карло. Этот пример использует те же данные и контекст, но принимает полусопряженную предшествующую модель вместо этого.
Создайте полусопряженную предшествующую модель для параметров линейной регрессии. Задайте количество предикторов p и имена коэффициентов регрессии.
p = 3; PriorMdl = bayeslm(p,'ModelType','semiconjugate',... 'VarNames',["IPI" "E" "WR"]);
PriorMdl semiconjugateblm объект модели.
Загрузите набор данных Нельсона-Плоссера. Создайте переменные для ряда предиктора и ответа.
load Data_NelsonPlosser X = DataTable{:,PriorMdl.VarNames(2:end)}; y = DataTable{:,'GNPR'};
Оцените крайние апостериорные распределения и .
rng(1); % For reproducibility
[PosteriorMdl,Summary] = estimate(PriorMdl,X,y);Method: Gibbs sampling with 10000 draws
Number of observations: 62
Number of predictors: 4
| Mean Std CI95 Positive Distribution
-------------------------------------------------------------------------
Intercept | -23.9922 9.0520 [-41.734, -6.198] 0.005 Empirical
IPI | 4.3929 0.1458 [ 4.101, 4.678] 1.000 Empirical
E | 0.0011 0.0003 [ 0.000, 0.002] 0.999 Empirical
WR | 2.4711 0.3576 [ 1.762, 3.178] 1.000 Empirical
Sigma2 | 46.7474 8.4550 [33.099, 66.126] 1.000 Empirical
PosteriorMdl empiricalblm объект модели, потому что крайние апостериорные распределения полусопряженных моделей аналитически тяжелы, таким образом, estimate должен реализовать сэмплер Гиббса. Summary таблица, содержащая оценки, и заключает тот estimate отображения в командной строке.
Отобразите сводную таблицу.
Summary
Summary=5×6 table
Mean Std CI95 Positive Distribution Covariances
_________ __________ ________________________ ________ _____________ ______________________________________________________________________
Intercept -23.992 9.052 -41.734 -6.1976 0.0053 {'Empirical'} 81.938 0.81622 -0.0025308 0.58928 0
IPI 4.3929 0.14578 4.1011 4.6782 1 {'Empirical'} 0.81622 0.021252 -7.1663e-06 -0.030939 0
E 0.0011124 0.00033976 0.00045128 0.0017883 0.9989 {'Empirical'} -0.0025308 -7.1663e-06 1.1544e-07 -8.4598e-05 0
WR 2.4711 0.3576 1.7622 3.1781 1 {'Empirical'} 0.58928 -0.030939 -8.4598e-05 0.12788 0
Sigma2 46.747 8.455 33.099 66.126 1 {'Empirical'} 0 0 0 0 71.487
Доступ к 95% equitailed вероятный интервал коэффициента регрессии IPI.
Summary.CI95(2,:)
ans = 1×2
4.1011 4.6782
PriorMdl — Байесова модель линейной регрессииconjugateblm объект модели | semiconjugateblm объект модели | diffuseblm объект модели | empiricalblm объект модели | customblm объект моделиБайесова модель линейной регрессии представление предшествующей модели, заданной как объект в этой таблице.
| Объект модели | Описание |
|---|---|
conjugateblm | Зависимый, нормальная обратная гамма спрягает модель, возвращенную bayeslm или estimate |
semiconjugateblm | Независимый, нормальная обратная гамма полуспрягает модель, возвращенную bayeslm |
diffuseblm | Рассейте предшествующую модель, возвращенную bayeslm |
empiricalblm | Предшествующая модель, охарактеризованная выборками от предшествующих распределений, возвращенных bayeslm или estimate |
customblm | Предшествующая функция распределения, которую вы объявляете возвращенный bayeslm |
PriorMdl может также представлять объединенную следующую модель, возвращенную estimate, любой conjugateblm или empiricalblm объект модели. В этом случае, estimate обновляет объединенное апостериорное распределение с помощью новых наблюдений в X и y.
X — Данные о предиктореДанные о предикторе для модели многофакторной линейной регрессии, заданной как numObservations- PriorMdl.NumPredictors числовая матрица. numObservations количество наблюдений и должно быть равно длине y.
Типы данных: double
y — Данные об ответеДанные об ответе для модели многофакторной линейной регрессии, заданной как числовой вектор с numObservations элементы.
Типы данных: double
Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
'Sigma2',2 задает оценку условного апостериорного распределения коэффициентов регрессии, учитывая данные и что заданным отклонением воздействия является 2.'Display' — Отметьте, чтобы отобразить Байесовы сводные данные средства оценки в командной строкеtrue (значение по умолчанию) | falseОтметьте, чтобы отобразить Байесовы сводные данные средства оценки в командной строке, заданной как разделенная запятой пара, состоящая из 'Display' и значение в этой таблице.
| Значение | Описание |
|---|---|
true | estimate информация об оценке печати и таблица, обобщающая Байесовы средства оценки к командной строке. |
false | estimate не распечатывает к командной строке. |
Информация об оценке включает метод оценки, зафиксированные параметры, количество наблюдений и количество предикторов. Сводная таблица содержит оцененные следующие средние значения и стандартные отклонения (квадратный корень из следующего отклонения), 95% equitailed вероятные интервалы, апостериорная вероятность, что параметр больше 0, и описание апостериорного распределения (если известный).
Если вы задаете один из Beta или Sigma2, затем estimate включает вашу спецификацию в отображение, и соответствующие следующие оценки тривиальны.
Пример: 'Display',false
Типы данных: логический
'Beta' — Значение коэффициентов регрессии для условной оценки апостериорного распределения отклонения воздействия[]) (значение по умолчанию) | числовой вектор-столбецЗначение коэффициентов регрессии для условной оценки апостериорного распределения отклонения воздействия, заданного как разделенная запятой пара, состоящая из 'Beta' и (PriorMdl.Intercept + PriorMdl.NumPredictors)-by-1 числовой вектор. estimate оценивает характеристики π (σ 2|yX, β = Beta), где y yX X, и Beta значение 'Beta'. Если PriorMdl.Intercept true, затем Beta(1) соответствует прерыванию модели. Все другие значения соответствуют переменным предикторам, которые составляют столбцы X\beta не может содержать NaN значения (то есть, все коэффициенты должны быть известны).
Вы не можете задать Beta и Sigma2 одновременно.
По умолчанию, estimate не вычисляет характеристики условного выражения, следующего из σ 2.
Пример: 'Beta',1:3
Типы данных: double
'Sigma2' — Значение отклонения воздействия для условной оценки апостериорного распределения коэффициентов регрессии[]) (значение по умолчанию) | положительный числовой скалярЗначение отклонения воздействия для условной оценки апостериорного распределения коэффициентов регрессии, заданных как разделенная запятой пара, состоящая из 'Sigma2' и положительный числовой скаляр. estimate оценочные характеристики π (β |yX, Sigma2), где y yX X, и Sigma2 значение 'Sigma2'.
Вы не можете задать Sigma2 и Beta одновременно.
По умолчанию, estimate не вычисляет характеристики условного выражения, следующего из β.
Пример: 'Sigma2',1
Типы данных: double
'NumDraws' — Симуляция Монте-Карло настроила объем выборки1e5 (значение по умолчанию) | положительное целое числоСимуляция Монте-Карло настроила объем выборки, заданный как разделенная запятой пара, состоящая из 'NumDraws' и положительное целое число. estimate на самом деле чертит BurnIn – NumDraws*Thin выборки. Поэтому estimate основывает оценки от NumDraws выборки. Для получения дополнительной информации, на как estimate уменьшает полную выборку Монте-Карло, см. Алгоритмы.
Если PriorMdl semiconjugateblm модель и вы задаете Beta или Sigma2, затем MATLAB® игнорирует NumDraws.
Пример: 'NumDraws',1e7
Типы данных: double
'BurnIn' — Количество ничьих, чтобы удалить с начала выборки Монте-Карло (значение по умолчанию) | неотрицательный скалярКоличество ничьих, чтобы удалить с начала выборки Монте-Карло уменьшать переходные эффекты, заданные как разделенная запятой пара, состоящая из 'BurnIn' и неотрицательный скаляр. Для получения дополнительной информации, на как estimate уменьшает полную выборку Монте-Карло, см. Алгоритмы.
Чтобы помочь вам задать соответствующий размер электротермотренировки, определите степень переходного поведения в выборке Монте-Карло путем определения 'BurnIn',0, симуляция нескольких тысяч наблюдений с помощью simulate, и затем графический вывод путей.
Пример: 'BurnIn',0
Типы данных: double
'Thin' — Монте-Карло настроил множитель объема выборки (значение по умолчанию) | положительное целое числоМонте-Карло настроил множитель объема выборки, заданный как разделенная запятой пара, состоящая из 'Thin' и положительное целое число.
Фактическим объемом выборки Монте-Карло является BurnIn + NumDraws*Thin. После отбрасывания выжигания дефектов, estimate отбрасывает каждый Thin– 1 чертит, и затем сохраняет следующее. Для получения дополнительной информации, на как estimate уменьшает полную выборку Монте-Карло, см. Алгоритмы.
Уменьшать потенциальную большую последовательную корреляцию в выборке Монте-Карло или уменьшать потребление памяти ничьих, сохраненных в PosteriorMdl, задайте большое значение для Thin.
Пример: 'Thin',5
Типы данных: double
'BetaStart' — Начальные значения коэффициентов регрессии для выборки MCMCНачальные значения коэффициентов регрессии для выборки Цепи Маркова Монте-Карло (MCMC), заданной как разделенная запятой пара, состоящая из 'BetaStart' и числовой вектор-столбец с (PriorMdl.Intercept + PriorMdl.NumPredictors) элементы. По умолчанию, BetaStart оценка обычных наименьших квадратов (OLS).
Хорошая практика должна запустить estimate многократно с помощью различных начальных значений параметра. Проверьте, что решения от каждого запуска сходятся к подобным значениям.
Пример: 'BetaStart',[1; 2; 3]
Типы данных: double
'Sigma2Start' — Начальные значения отклонения воздействия для выборки MCMCНачальные значения отклонения воздействия для выборки MCMC, заданной как разделенная запятой пара, состоящая из 'Sigma2Start' и положительный числовой скаляр. По умолчанию, Sigma2Start остаточная среднеквадратическая ошибка OLS.
Хорошая практика должна запустить estimate многократно с помощью различных начальных значений параметра. Проверьте, что решения от каждого запуска сходятся к подобным значениям.
Пример: 'Sigma2Start',4
Типы данных: double
'Reparameterize' — Репараметризация σ 2 как журнал (σ 2)false (значение по умолчанию) | trueРепараметризация σ 2 как журнал (σ 2) во время следующей оценки и симуляции, заданной как разделенная запятой пара, состоящая из 'Reparameterize' и значение в этой таблице.
| Значение | Описание |
|---|---|
false | estimate не повторно параметризовал σ 2. |
true | estimate повторно параметризовал σ 2 как журнал (σ 2). estimate преобразует результаты назад в исходную шкалу и не изменяет функциональную форму PriorMdl.LogPDF. |
Если вы испытываете числовую нестабильность во время следующей оценки или симуляции σ 2, то задаете 'Reparameterize',true.
Пример: 'Reparameterize',true
Типы данных: логический
'Sampler' — Сэмплер MCMC'slice' (значение по умолчанию) | 'metropolis' | 'hmc'Сэмплер MCMC, заданный как разделенная запятой пара, состоящая из 'Sampler' и значение в этой таблице.
| Значение | Описание |
|---|---|
'slice' | Сэмплер среза |
'metropolis' | Случайный сэмплер Столицы обхода |
'hmc' | Сэмплер Гамильтонова Монте-Карло (HMC) |
Увеличить качество MCMC чертит, настройте сэмплер.
Прежде, чем вызвать estimate, задайте настраивающиеся параметры и их значения при помощи sampleroptions. Например, чтобы задать ширину сэмплера среза widthИспользование:
options = sampleroptions('Sampler',"slice",'Width',width);
Задайте объект, содержащий настраивающиеся спецификации параметра, возвращенные sampleroptions при помощи 'Options' аргумент пары "имя-значение". Например, чтобы использовать настраивающиеся спецификации параметра в options, задайте:
'Options',options
Если вы задаете сэмплер HMC, то лучшая практика состоит в том, чтобы обеспечить градиент для некоторых переменных, по крайней мере. estimate обращается численный расчет любых недостающих частных производных (NaN значения) в векторе градиента.
Пример: 'Sampler',"hmc"
Типы данных: string
'Options' — Опции сэмплера[] (значение по умолчанию) | массив структурОпции сэмплера, заданные как разделенная запятой пара, состоящая из 'Options' и массив структур, возвращенный sampleroptions. Используйте 'Options' задавать сэмплер MCMC и его настраивающие значения параметров.
Пример: 'Options',sampleroptions('Sampler',"hmc")
Типы данных: struct
'Width' — Типичная ширина интервала выборкиТипичная ширина интервала выборки вокруг текущего значения в предельных распределениях для сэмплера среза, заданного как разделенная запятой пара, состоящая из 'Width' и положительный числовой скаляр или (PriorMdl.Intercept + PriorMdl.NumPredictors+ 1 )-by-1 числовой вектор положительных значений. Первый элемент соответствует прерыванию модели, если вы существуете в модели. Следующий PriorMdl.NumPredictors элементы соответствуют коэффициентам переменных предикторов, упорядоченных столбцами данных предиктора. Последний элемент соответствует отклонению модели.
Если Width скаляр, затем estimate применяет Width ко всему PriorMdl.NumPredictors + PriorMdl.Intercept+ 1 предельные распределения.
Если Width числовой вектор, затем estimate применяет первый элемент к прерыванию (если вы существуете), следующий PriorMdl.NumPredictors элементы к коэффициентам регрессии, соответствующим переменным предикторам в X, и последний элемент к отклонению воздействия.
Если объем выборки (size(X,1)) меньше 100, затем Width 10 по умолчанию.
Если объем выборки - по крайней мере 100, то estimate наборы Width к вектору соответствующих следующих стандартных отклонений по умолчанию, принимая рассеянную предшествующую модель (diffuseblm).
Типичная ширина сэмплера среза не влияет на сходимость выборки MCMC. Это действительно влияет на количество необходимых функциональных оценок, то есть, КПД алгоритма. Если ширина слишком мала, то алгоритм может реализовать чрезмерное количество функциональных оценок, чтобы определить соответствующую ширину выборки. Если ширина является слишком большой, то алгоритму придется уменьшить ширину к соответствующему размеру, который требует функциональных оценок.
estimate отправляет Width к slicesample функция. Для получения дополнительной информации смотрите slicesample.
Для максимальной гибкости задайте ширину сэмплера среза width при помощи 'Options' аргумент пары "имя-значение". Например:
'Options',sampleroptions('Sampler',"slice",'Width',width)
Пример: 'Width',[100*ones(3,1);10]
PosteriorMdl — Байесова модель линейной регрессии хранение характеристик распределенияconjugateblm объект модели | semiconjugateblm объект модели | diffuseblm объект модели | empiricalblm объект модели | customblm объект моделиБайесова модель линейной регрессии хранение характеристик распределения, возвращенных как conjugateblm, semiconjugateblm, diffuseblm, empiricalblm, или customblm объект модели.
Если вы не задаете ни один Beta или Sigma2 (их значениями является []), затем estimate обновляет предшествующую модель с помощью вероятности данных, чтобы сформировать апостериорное распределение. PosteriorMdl характеризует апостериорное распределение. Его тип объекта зависит от предшествующего типа модели (PriorMdl).
| Объект модели | PriorMdl |
|---|---|
conjugateblm
| conjugateblm или diffuseblm |
empiricalblm
| semiconjugateblm, empiricalblm, или customblm |
Если вы задаете любой Beta или Sigma2, затем PosteriorMdl равняется PriorMdl (эти две модели являются тем же объектом, хранящим те же значения свойств). estimate не обновляет предшествующую модель, чтобы сформировать следующую модель. Однако estBeta, EstBetaCov, estSigma2, estSigma2Var, и Summary сохраните условные следующие оценки.
Для получения дополнительной информации об отображении PosteriorMdl, смотрите Summary.
Для получения дополнительной информации на поддерживаемых апостериорных распределениях, которые аналитически послушны, смотрите Аналитически Послушное Последующее поколение.
Summary — Сводные данные Байесовых средств оценкиСводные данные Байесовых средств оценки, возвращенных как таблица. Summary содержит ту же информацию как отображение сводных данных оценки (Display). Строки соответствуют параметрам, и столбцы соответствуют этим следующим характеристикам для каждого параметра:
Mean – Следующее среднее значение
Std – Следующее стандартное отклонение
CI95 – 95% equitailed вероятный интервал
Positive – Апостериорная вероятность параметр больше 0
Distribution – Описание крайнего или условного апостериорного распределения параметра, когда известный
Covariances – Предполагаемая ковариационная матрица коэффициентов и отклонения воздействия
Имена строки являются именами в PriorMdl.VarNames. Именем последней строки является Sigma2.
В качестве альтернативы передайте PosteriorMdl к summarize получить сводные данные Байесовых средств оценки.
Если PriorMdl empiricalblm объект модели. Вы не можете задать Beta или Sigma2. Вы не можете оценить условные апостериорные распределения при помощи эмпирического предшествующего распределения.
Bayesian linear regression model обрабатывает параметры β и σ 2 в модели yt многофакторной линейной регрессии (MLR) = xt β + εt как случайные переменные.
В течение многих времен t = 1..., T:
yt является наблюдаемым ответом.
xt является 1 на (p + 1) вектор-строка из наблюдаемых величин предикторов p. Размещать прерывание модели, x 1t = 1 для всего t.
β (p + 1)-by-1 вектор-столбец коэффициентов регрессии, соответствующих переменным, которые составляют столбцы xt.
εt является случайным воздействием со средним значением нуля и Cov (ε) = σ 2IT×T, в то время как ε является T-by-1 вектор, содержащий все воздействия. Эти предположения подразумевают, что вероятность данных
ϕ (yt; xtβ, σ 2) является Гауссовой плотностью вероятности со средним xtβ и отклонением σ 2 оцененных в yt;.
Прежде, чем рассмотреть данные, вы налагаете предположение joint prior distribution на (β, σ 2). В Байесовом анализе вы обновляете распределение параметров при помощи информации о параметрах, полученных из вероятности данных. Результатом является joint posterior distribution (β, σ 2) или conditional posterior distributions параметров.
Симуляция Монте-Карло подвергается изменению. Если estimate симуляция Монте-Карло использования, затем оценивает, и выводы могут варьироваться, когда вы вызываете estimate многократно при на вид эквивалентных условиях. Воспроизвести результаты оценки, прежде, чем вызвать estimate, установите seed случайных чисел при помощи rng.
Если estimate выдает ошибку при оценке, что апостериорное распределение с помощью пользовательской предшествующей модели, затем пытается настроить начальные значения параметров при помощи BetaStart или Sigma2Start, или попытайтесь настроить заявленный журнал предшествующая функция, и затем восстановить модель. Ошибка может указать, что журналом предшествующего распределения является –Inf в заданных начальных значениях.
Каждый раз, когда предшествующее распределение (PriorMdl) и вероятность данных дает к аналитически послушному апостериорному распределению, estimate оценивает решения закрытой формы средств оценки Бейеса. В противном случае, estimate обращения к симуляции Монте-Карло, чтобы оценить параметры и чертить выводы. Для получения дополнительной информации смотрите Следующую Оценку и Вывод.
Этот рисунок иллюстрирует как estimate уменьшает выборку Монте-Карло использование значений NumDraws, Thin, и BurnIn.

Прямоугольники представляют последовательные ничьи от распределения. estimate удаляет белые прямоугольники из выборки Монте-Карло. Остающийся NumDraws черные прямоугольники составляют выборку Монте-Карло.
Ошибки, запускающиеся в R2019b
Для более простого интерфейса, estimate возвращает только предполагаемую модель и сводную таблицу оценки. Теперь поддерживаемые синтаксисы:
PosteriorMdl = estimate(...); [PosteriorMdl,Summary] = estimate(...);
В прошлых релизах, estimate возвращенный эти выходные аргументы:
[PosteriorMdl,estBeta,EstBetaCov,estSigma2,estSigma2Var,Summary] = estimate(...);
estBeta, EstBetaCov, estSigma2, и estSigma2Var следующие средние значения и ковариации β и σ 2.Запуск в R2019b, если вы запрашиваете какой-либо выходной аргумент в положении, больше, чем второе положение, estimate проблемы эта ошибка:
Too many output arguments.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.