condest

Оценка числа обусловленности с 1 нормой

Синтаксис

c = condest(A)
c = condest(A,t)
[c,v] = condest(A)

Описание

c = condest(A) вычисляет нижнюю границу c для числа обусловленности с 1 нормой квадратной матрицы A.

c = condest(A,t) изменения t, положительный целочисленный параметр равняется количеству столбцов в базовой матрице итерации. Увеличение числа столбцов обычно дает лучшую оценку условия, но увеличивает стоимость. Значением по умолчанию является t = 2, который почти всегда дает оценку, правильную в факторе 2.

[c,v] = condest(A) также вычисляет векторный v который является аппроксимированным пустым вектором если c является большим. v удовлетворяет norm(A*v,1) = norm(A,1)*norm(v,1)/c.

Примечание

condest вызывает rand. Если повторяемые результаты требуются, затем используют rng установить генератор случайных чисел на его настройки запуска перед использованием condest.

rng('default')

Советы

Эта функция особенно полезна для разреженных матриц.

Алгоритмы

condest основан на средстве оценки условия с 1 нормой Hager [1] и блочно-ориентированном обобщении средства оценки Хэджера, данного Higham и Tisseur [2]. Основа алгоритма включает итеративный поиск, чтобы оценить A11 не вычисляя A −1. Это изложено как выпуклая, но недифференцируемая задача оптимизации max A1x1 удовлетворяющий x1=1

Ссылки

[1] Уильям В. Хэджер, “условие оценивает”, SIAM J. Научный закон Comput. 5, 1984, 311-316, 1984.

[2] Николас Дж. Хигем и Франсуаз Тиссер, “Алгоритм блока для матричной оценки с 1 нормой с приложением к псевдоспектрам с 1 нормой, “SIAM J. Matrix Anal. Appl., издание 21, 1185-1201, 2000.

Смотрите также

| |

Представлено до R2006a

Для просмотра документации необходимо авторизоваться на сайте