Условный спектральный момент плотности распределения времени сигнала
Моменты частоты времени обеспечивают эффективный способ охарактеризовать сигналы, частоты которых изменение вовремя (то есть, являются неустановившимися). Такие сигналы могут явиться результатом машинного оборудования с ухудшенным или неисправным оборудованием. Классический анализ Фурье не может получить изменяющееся во времени поведение частоты. Плотность распределения времени, сгенерированная кратковременным преобразованием Фурье (STFT) или другими методами частотно-временного анализа, может получить изменяющееся во времени поведение, но непосредственно обрабатывающий эти распределения как функции несет высокую вычислительную нагрузку, и потенциально вводит несвязанные и нежелательные характеристики функции. В отличие от этого дистилляция результатов плотности распределения времени в моменты частоты времени низкой размерности предоставляет метод для получения существенных особенностей сигнала в намного меньшем блоке данных. Используя эти моменты значительно уменьшает вычислительную нагрузку для извлечения признаков и сравнения — ключевое преимущество для работы в режиме реального времени [1], [2].
Predictive Maintenance Toolbox™ реализует три ветви момента частоты времени:
momentS = tfsmoment( возвращает условный спектральный момент xt,order)timetable
xt как timetable. momentS переменные обеспечивают спектральные моменты для порядков, которые вы задаете в order. Данные в xt может быть неоднородно произведен.
momentS = tfsmoment( возвращает условный спектральный момент вектора timeseries x,fs,order)x, произведенный на уровне Fs. Момент возвращен как матрица, в которой каждый столбец представляет спектральный момент, соответствующий каждый элемент в order. С этим синтаксисом, x должен быть однородно произведен.
возвращает условный спектральный момент momentS = tfsmoment(x,ts,order) x произведенный в то время, когда моменты заданы ts в секундах.
Если ts скалярный duration, затем tfsmoment применяет его однородно ко всем выборкам.
Если ts вектор, затем tfsmoment применяет каждый элемент к соответствующей выборке в x. Используйте этот синтаксис в неоднородной выборке.
возвращает условный спектральный момент сигнала, спектрограммой степени которого является momentS = tfsmoment(p,fp,tp,order) pfp содержит частоты, соответствующие спектральной оценке, содержавшейся в p. tp содержит вектор моментов времени, соответствуя центрам использованных для расчета кратковременных оценок спектра мощности оконных сегментов. Используйте этот синтаксис когда:
У вас уже есть спектр мощности или спектрограмма, которую вы хотите использовать.
Вы хотите настроить опции для pspectrum, вместо того, чтобы принимать pspectrum по умолчанию опции, что tfsmoment применяется. Используйте pspectrum сначала с опциями вы хотите, и затем используете выход p как введено для tfsmoment. Этот подход также позволяет вам строить спектрограмму степени.
задает аргументы пары "имя-значение" использования дополнительных свойств. Опции включают централизацию момента и спецификацию предела частоты.momentS = tfsmoment(___,Name,Value)
Можно использовать Name,Value с любой из комбинаций входных аргументов в предыдущих синтаксисах.
tfsmoment(___) без выходных аргументов строит условный спектральный момент. Ось X графика время, и ось Y графика является соответствующим спектральным моментом.
Можно использовать этот синтаксис с любой из комбинаций входных аргументов в предыдущих синтаксисах.
[1] Loughlin, P. J. "Каковы моменты частоты времени сигнала?" Совершенствовались алгоритмы обработки сигналов, архитектура, и КСИ реализаций, продолжения SPIE. Издание 4474, ноябрь 2001.
[2] Loughlin, P., Ф. Кэкрэк и Л. Коэн. "Условный Анализ Момента Переходных процессов с Приложением к Вертолетным Данным об Отказе". Механические Системы и Обработка сигналов. Vol 14, Выпуск 4, 2000, стр 511–522.