peig

Псевдоспектр с помощью метода собственного вектора

Описание

[S,wo] = peig(x,p) реализует собственный вектор спектральный метод оценки и возвращает S, оценка псевдоспектра входного сигнала x, и векторный wo из нормированных частот (в рад/выборке), в котором оценен псевдоспектр. Псевдоспектр вычисляется с помощью оценок собственных векторов корреляционной матрицы, сопоставленной с входными данными x. Можно задать размерность подпространства сигнала с помощью входного параметра p.

[S,wo] = peig(x,p,wi) возвращает псевдоспектр, вычисленный на нормированных частотах, заданных в векторном wi. Векторный wi должен иметь два или больше элемента, потому что в противном случае функция интерпретирует его как nfft.

[S,wo] = peig(___,nfft) задает целочисленную длину БПФ, nfft, использовать, чтобы оценить псевдоспектр. Этот синтаксис может включать любую комбинацию входных параметров от предыдущих синтаксисов.

[S,wo] = peig(___,'corr') обеспечивает входной параметр x быть интерпретированным как корреляционная матрица, а не матрица данных сигнала. Для этого синтаксиса, x должна быть квадратная матрица, и все ее собственные значения должны быть неотрицательными.

[S,fo] = peig(x,p,nfft,fs) возвращает псевдоспектр, вычисленный на частотах, заданных в векторном fo (в Гц). Предоставьте частоту дискретизации fs в Гц.

[S,fo] = peig(x,p,fi,fs) возвращает псевдоспектр, вычисленный на частотах, заданных в векторном fi. Векторный fi должен иметь два или больше элемента, потому что в противном случае функция интерпретирует его как nfft.

[S,fo] = peig(x,p,nfft,fs,nwin,noverlap) возвращает псевдоспектр S путем сегментации входных данных x использование окна nwin и перекройте длину noverlap.

пример

[___] = peig(___,freqrange) указывает диапазон значений частоты, чтобы включать в fo или wo.

[___,v,e] = peig(___) возвращает матричный v из шумовых собственных векторов, наряду со связанными собственными значениями в векторном e.

пример

peig(___) без выходных аргументов строит псевдоспектр в окне текущей фигуры.

Примеры

свернуть все

Реализуйте метод собственного вектора, чтобы найти псевдоспектр суммы трех синусоид в шуме. Используйте длину БПФ по умолчанию 256. Входные параметры являются комплексными синусоидами, таким образом, вы устанавливаете p равняйтесь количеству входных параметров. Используйте модифицированный метод ковариации в оценке корреляционной матрицы.

n = 0:99;   
s = exp(1i*pi/2*n)+2*exp(1i*pi/4*n)+exp(1i*pi/3*n)+randn(1,100);
X = corrmtx(s,12,'mod'); 
peig(X,3,'whole')

Сгенерируйте действительный сигнал, который состоит из суммы двух синусоид, встроенных в белый Гауссов шум модульного отклонения. Сигнал производится на уровне 100 Гц в течение 1 секунды. Синусоиды имеют частоты 25 Гц и 35 Гц. Синусоида более низкой частоты имеет дважды амплитуду другого.

fs = 100;
t = 0:1/fs:1-1/fs;

s = 2*sin(2*pi*25*t)+sin(2*pi*35*t)+randn(1,100);

Используйте метод собственного вектора, чтобы вычислить псевдоспектр сигнала между 0 и частота Найквиста. Задайте размерность подпространства сигнала 2 и длину ДПФ 512.

peig(s,2,512,fs,'half')

Не возможно разрешить две синусоиды, потому что сигнал действителен. Повторите расчет с помощью подпространства сигнала размерности 4.

peig(s,4,512,fs,'half')

Входные параметры

свернуть все

Входной сигнал, заданный как вектор или матрица. Если x вектор, затем он обработан как одно наблюдение за сигналом. Если x матрица, каждая строка x представляет отдельное наблюдение за сигналом. Например, каждой строкой является один выход массива датчиков, как в обработке матриц, такой что x'*x оценка корреляционной матрицы.

Примечание

Можно использовать выход corrmtx сгенерировать x.

Поддержка комплексного числа: Да

Размерность подпространства, заданная как действительное положительное целое число или двухэлементный вектор. Если p действительное положительное целое число, затем оно обработано как размерность подпространства. Если p двухэлементный вектор, второй элемент p представляет порог, который умножается на min λ, самое маленькое предполагаемое собственное значение корреляционной матрицы сигнала. Собственные значения ниже порога λ min*p(2) присвоены шумовому подпространству. В этом случае, p(1) задает максимальную размерность подпространства сигнала. Дополнительный пороговый параметр во второй записи в p предоставляет вам больше гибкости и управления в присвоении шумовых и подпространств сигнала.

Примечание

Если входные параметры к peig действительные синусоиды, установите значение p удвоить количество входных сигналов. Если входные параметры являются комплексными синусоидами, установите p равняйтесь количеству входных параметров.

Поддержка комплексного числа: Да

Введите нормированные частоты, заданные как вектор.

Типы данных: double

Количество точек ДПФ, заданных как положительное целое число. Если nfft задан как пустой, nfft по умолчанию используется.

Частота дискретизации, заданная как положительная скалярная величина в Гц. в Гц. Если вы задаете fs с пустым вектором [], значения по умолчанию частоты дискретизации к 1 Гц.

Введите частоты, заданные как вектор. Псевдоспектр вычисляется на частотах, заданных в векторе.

Длина прямоугольного окна, заданного как неотрицательное целое число.

Количество перекрытых выборок, заданных как неотрицательное целое число, меньшее, чем длина окна.

Примечание

Аргументы nwin и noverlap проигнорированы, когда вы включаете 'corr' в синтаксисе.

Частотный диапазон оценок псевдоспектра, заданных как один из 'half', whole, или 'centered'.

  • 'half' — Возвращает половину спектра для действительного входного сигнала x. Если nfft даже, затем S имеет длину nfft/2 + 1 и вычисляется на интервале [0, π]. Если nfft нечетно, длина S (nfft + 1)/2 и интервал частоты [0, π). Когда ваш задавать fs, интервалы [0, fs/2) и [0, fs/2] для четного и нечетного nfft, соответственно.

  • 'whole' — Возвращает целый спектр или для действительного или для комплексного входа x. В этом случае, S имеет длину nfft и вычисляется на интервале [0, 2π). Когда вы задаете fs, интервал частоты [0, fs).

  • 'centered' — Возвращает целый спектр в центре или для действительного или для комплексного входа x. В этом случае, S имеет длину nfft и вычисляется на интервале (–π, π] для даже nfft и (–π, π) для нечетного nfft. Когда вы задаете fs, интервалы частоты (–fs/2, fs/2] и (–fs/2, fs/2) для четного и нечетного nfft, соответственно.

Примечание

Можно поместить аргументы freqrange или 'corr' где угодно в списке входных параметров после p.

Выходные аргументы

свернуть все

Оценка псевдоспектра, возвращенная как вектор. Псевдоспектр вычисляется с помощью оценок собственных векторов корреляционной матрицы, сопоставленной с входными данными x.

Выведите нормированные частоты, заданные как вектор. S и wo имейте ту же длину. В общем случае длина БПФ и значения входа x определите длину вычисленного S и область значений соответствующих нормированных частот. Таблица показывает длину Swo) и область значений соответствующих нормированных частот для первого синтаксиса.

S характеристики для длины БПФ 256 (значение по умолчанию)

Тип входных данныхДлина S и w0Область значений соответствующих нормированных частот

Действительный

129

[0, π] 

Комплекс

256

[0, 2π) 

Если nfft задан, следующая таблица указывает на длину S и wo и частотный диапазон для wo.

S и характеристики вектора частоты

Тип входных данныхnfft Даже или НечетныйДлина S и wОбласть значений w

Действительный

Даже

  (nfft/2 )+ 1

[0, π] 

Действительный

Нечетный

  (nfft + 1)/2

[0, π) 

Комплекс

Даже или нечетный

nfft

[0, 2π) 

Выведите частоту, возвращенную как вектор. Частотный диапазон для fo зависит от nfft, fs, и значения входа x. Длина Sfo) эквивалентен в Характеристиках Вектора S и Частоты выше. Следующая таблица указывает на частотный диапазон для fo если nfft и fs заданы.

S и Характеристики Вектора Частоты с Заданной фс

Тип входных данных

Ровный/Нечетный nfft

Область значений f

Действительный

Даже

[0, fs/2]

Действительный

Нечетный

[0, fs/2)

Комплекс

Даже или нечетный

[0, fs)

Кроме того, если nwin и noverlap также заданы, входные данные x сегментируется и оконный, прежде чем матрица раньше оценивала, что собственные значения корреляционной матрицы формулируются. Сегментация данных зависит от nwin, noverlap, и форма x. Комментарии к получившимся оконным сегментам описаны в следующей таблице.

Оконные Данные В зависимости от x и nwin 

форма x

Форма nwin

Оконные данные

Вектор данных

Скаляр

Длиной является nwin.

Вектор данных

Вектор коэффициентов

Длиной является length(nwin).

Матрица данных

Скаляр

Данные не являются оконными.

Матрица данных

Вектор коэффициентов

length(nwin) должен совпасть с длиной столбца x, и noverlap не используется.

Смотрите Длину Собственного вектора В зависимости от Входных данных и Синтаксиса для сопутствующей информации на этом синтаксисе.

Шумовые собственные вектора, возвращенные как матрица. Столбцы v охватите шумовое подпространство размерности size(v,2). Размерностью подпространства сигнала является size(v,1)-size(v,2).

Предполагаемые собственные значения корреляционной матрицы, возвращенной как вектор.

Алгоритмы

Метод собственного вектора оценивает псевдоспектр от сигнала или корреляционной матрицы с помощью взвешенной версии алгоритма MUSIC, выведенного из eigenspace [1] [2] метода анализа Шмидта. Алгоритм выполняет eigenspace анализ корреляционной матрицы сигнала, чтобы оценить содержимое частоты сигнала. Если вы не предоставляете корреляционную матрицу, собственные значения и собственные вектора корреляционной матрицы сигнала оцениваются с помощью svd. Этот алгоритм особенно подходит для сигналов, которые являются суммой синусоид с аддитивным белым Гауссовым шумом.

Метод собственного вектора производит оценку псевдоспектра, данную

Pev(f)=1k=p+1N|vkHe(f)|2/λk

где N является размерностью собственных векторов, и vk является k th собственный вектор корреляционной матрицы входного сигнала. Целочисленный p является размерностью подпространства сигнала, таким образом, собственные вектора vk, используемый в сумме, соответствуют самым маленьким собственным значениям λk корреляционной матрицы. Собственные вектора использовали, охватывают шумовое подпространство. Векторный e (f) состоит из комплексных экпонент, таким образом, скалярное произведение vkH e (f) составляет преобразование Фурье. Это используется в расчете псевдоспектра. БПФ вычисляется для каждого vk, и затем величины в квадрате суммируются и масштабируются.

Ссылки

[1] Марпл, С. Лоуренс. Цифровой Спектральный анализ. Englewood Cliffs, NJ: Prentice Hall, 1987, стр 373–378.

[2] Шмидт, R. O. “Несколько Эмиттерное Местоположение и Оценка Параметра Сигнала”. IEEE® Transactions на Антеннах и Распространении. Издание AP-34, март 1986, стр 276–280.

[3] Stoica, Петр и Рэндольф Л. Моисей. Спектральный анализ сигналов. Верхний Сэддл-Ривер, NJ: Prentice Hall, 2005.

Смотрите также

| | | | | | | |

Представлено до R2006a

Для просмотра документации необходимо авторизоваться на сайте