kfoldEdge

Ребро классификации для перекрестной подтвержденной модели классификации ядер

Описание

пример

edge = kfoldEdge(CVMdl) возвращает ребро классификации, полученное перекрестной подтвержденной, бинарной моделью ядра (ClassificationPartitionedKernel) CVMdl. Для каждого сгиба, kfoldEdge вычисляет ребро классификации для наблюдений сгиба валидации с помощью модели, обученной на наблюдениях учебного сгиба.

edge = kfoldEdge(CVMdl,Name,Value) возвращает ребро классификации с дополнительными опциями, заданными одним или несколькими аргументами пары "имя-значение". Например, задайте количество сгибов или уровня агрегации.

Примеры

свернуть все

Загрузите ionosphere набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, которые помечены любой плохо ('b') или хороший ('g').

load ionosphere

Перекрестный подтвердите бинарную модель классификации ядер использование данных.

CVMdl = fitckernel(X,Y,'Crossval','on')
CVMdl = 
  classreg.learning.partition.ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'


  Properties, Methods

CVMdl ClassificationPartitionedKernel модель. По умолчанию программное обеспечение реализует 10-кратную перекрестную проверку. Чтобы задать различное количество сгибов, используйте 'KFold' аргумент пары "имя-значение" вместо 'Crossval'.

Оцените перекрестное подтвержденное ребро классификации.

edge = kfoldEdge(CVMdl)
edge = 1.5585

В качестве альтернативы можно получить ребра на сгиб путем определения пары "имя-значение" 'Mode','individual' в kfoldEdge.

Выполните выбор признаков путем сравнения ребер k-сгиба от многоуровневых моделей. Базирующийся только на этом критерии, классификатор с самым большим ребром является лучшим классификатором.

Загрузите ionosphere набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, которые помечены любой плохо ('b') или хороший ('g').

load ionosphere

Случайным образом выберите половину переменных предикторов.

rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Перекрестный подтвердите две бинарных модели классификации ядер: тот, который использует все предикторы и тот, который использует половину предикторов.

CVMdl = fitckernel(X,Y,'CrossVal','on');
PCVMdl = fitckernel(X(:,idxPart),Y,'CrossVal','on');

CVMdl и PCVMdl ClassificationPartitionedKernel модели. По умолчанию программное обеспечение реализует 10-кратную перекрестную проверку. Чтобы задать различное количество сгибов, используйте 'KFold' аргумент пары "имя-значение" вместо 'Crossval'.

Оцените ребро k-сгиба для каждого классификатора.

fullEdge = kfoldEdge(CVMdl)
fullEdge = 1.5142
partEdge = kfoldEdge(PCVMdl)
partEdge = 1.8910

На основе ребер k-сгиба классификатор, который использует половину предикторов, является лучшей моделью.

Входные параметры

свернуть все

Перекрестная подтвержденная, бинарная модель классификации ядер, заданная как ClassificationPartitionedKernel объект модели. Можно создать ClassificationPartitionedKernel модель при помощи fitckernel и определение любого из аргументов пары "имя-значение" перекрестной проверки.

Получить оценки, kfoldEdge применяется те же данные раньше перекрестный подтверждали модель классификации ядер (X и Y).

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: kfoldEdge(CVMdl,'Mode','individual') возвращает ребро классификации для каждого сгиба.

Сверните индексы для прогноза, заданного как разделенная запятой пара, состоящая из 'Folds' и числовой вектор положительных целых чисел. Элементы Folds должен быть в диапазоне от 1 к CVMdl.KFold.

Программное обеспечение использует только сгибы, заданные в Folds для прогноза.

Пример: 'Folds',[1 4 10]

Типы данных: single | double

Уровень агрегации для выхода, заданного как разделенная запятой пара, состоящая из 'Mode' и 'average' или 'individual'.

Эта таблица описывает значения.

ЗначениеОписание
'average'Выход является скалярным средним значением по всем сгибам.
'individual'Выход является вектором длины k, содержащий одно значение на сгиб, где k является количеством сгибов.

Пример: 'Mode','individual'

Выходные аргументы

свернуть все

Ребро классификации, возвращенное в виде числа или числового вектор-столбца.

Если Mode 'average', затем edge среднее ребро классификации по всем сгибам. В противном случае, edge k-by-1 числовой вектор-столбец, содержащий ребро классификации для каждого сгиба, где k является количеством сгибов.

Больше о

свернуть все

Ребро классификации

classification edge является взвешенным средним classification margins.

Один способ выбрать среди нескольких классификаторов, например, выполнить выбор признаков, состоит в том, чтобы выбрать классификатор, который дает к самому большому ребру.

Поле классификации

classification margin для бинарной классификации, для каждого наблюдения, различия между счетом классификации к истинному классу и счетом классификации к ложному классу.

Программное обеспечение задает поле классификации для бинарной классификации как

m=2yf(x).

x является наблюдением. Если истинная метка x является положительным классом, то y равняется 1, и –1 в противном случае. f (x) является счетом классификации положительных классов к наблюдению x. Поле классификации обычно задается как m = y f (x).

Если поля находятся по той же шкале, то они служат мерой по уверенности классификации. Среди нескольких классификаторов те, которые дают к большим полям, лучше.

Счет классификации

Для моделей классификации ядер, необработанного classification score для классификации наблюдения x, вектор-строка, в положительный класс задан

f(x)=T(x)β+b.

  • T(·) преобразование наблюдения для расширения функции.

  • β является предполагаемым вектор-столбцом коэффициентов.

  • b является предполагаемым скалярным смещением.

Необработанный счет классификации к классификации x в отрицательный класс является f (x). Программное обеспечение классифицирует наблюдения в класс, который дает к положительному счету.

Если модель классификации ядер состоит из учеников логистической регрессии, то программное обеспечение применяет 'logit' выиграйте преобразование к необработанным баллам классификации (см. ScoreTransform).

Смотрите также

|

Введенный в R2018b

Для просмотра документации необходимо авторизоваться на сайте