Класс: GeneralizedLinearMixedModel
Отобразите обобщенную линейную модель смешанных эффектов
glme
— Обобщенная линейная модель смешанных эффектовGeneralizedLinearMixedModel
объектОбобщенная линейная модель смешанных эффектов, заданная как GeneralizedLinearMixedModel
объект. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel
.
Загрузите выборочные данные.
load mfr
Эти симулированные данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:
Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждого пакета, в часах (time
)
Температура пакета, в градусах Цельсия (temp
)
Категориальная переменная, указывающая на поставщика химиката, используемого в пакете (supplier
)
Количество дефектов в пакете (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.
Подбирайте обобщенную линейную модель смешанных эффектов использование newprocess
, time_dev
, temp_dev
, и supplier
как предикторы фиксированных эффектов. Включайте термин случайных эффектов для прерывания, сгруппированного factory
, составлять качественные различия, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects'
, таким образом, фиктивные переменные коэффициенты суммируют к 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной линейной модели смешанных эффектов
где
количество дефектов, наблюдаемых в пакете, произведенном фабрикой во время пакета .
среднее количество дефектов, соответствующих фабрике (где ) во время пакета (где ).
, , и измерения для каждой переменной, которые соответствуют фабрике во время пакета . Например, указывает ли пакет, произведенный фабрикой во время пакета используемый новый процесс.
и фиктивные переменные, которые используют эффекты (сумма к нулю) кодирование, чтобы указать ли компания C
или B
, соответственно, предоставленный химикаты процесса для пакета производятся фабрикой во время пакета .
прерывание случайных эффектов для каждой фабрики это составляет специфичное для фабрики изменение по качеству.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Отобразите модель.
disp(glme)
Generalized linear mixed-effects model fit by ML Model information: Number of observations 100 Fixed effects coefficients 6 Random effects coefficients 20 Covariance parameters 1 Distribution Poisson Link Log FitMethod Laplace Formula: defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory) Model fit statistics: AIC BIC LogLikelihood Deviance 416.35 434.58 -201.17 402.35 Fixed effects coefficients (95% CIs): Name Estimate SE tStat DF pValue {'(Intercept)'} 1.4689 0.15988 9.1875 94 9.8194e-15 {'newprocess' } -0.36766 0.17755 -2.0708 94 0.041122 {'time_dev' } -0.094521 0.82849 -0.11409 94 0.90941 {'temp_dev' } -0.28317 0.9617 -0.29444 94 0.76907 {'supplier_C' } -0.071868 0.078024 -0.9211 94 0.35936 {'supplier_B' } 0.071072 0.07739 0.91836 94 0.36078 Lower Upper 1.1515 1.7864 -0.72019 -0.015134 -1.7395 1.5505 -2.1926 1.6263 -0.22679 0.083051 -0.082588 0.22473 Random effects covariance parameters: Group: factory (20 Levels) Name1 Name2 Type Estimate {'(Intercept)'} {'(Intercept)'} {'std'} 0.31381 Group: Error Name Estimate {'sqrt(Dispersion)'} 1
Model information
таблица показывает общее количество наблюдений в выборочных данных (100), количество фиксированных - и коэффициенты случайных эффектов (6 и 20, соответственно), и количество параметров ковариации (1). Это также указывает, что переменная отклика имеет Poisson
распределение, функцией ссылки является Log
, и подходящим методом является Laplace
.
Formula
указывает на спецификацию модели с помощью обозначения Уилкинсона.
Model fit statistics
табличная статистика отображений раньше оценивала качество подгонки модели. Это включает критерий информации о Akaike (AIC
), Байесов информационный критерий (BIC
) значения, логарифмическая вероятность (LogLikelihood
), и отклонение (Deviance
Значения.
Fixed effects coefficients
таблица показывает тот fitglme
возвращенные 95% доверительных интервалов. Это содержит одну строку для каждого предиктора фиксированных эффектов, и каждый столбец содержит статистику, соответствующую тому предиктору. Столбец 1 (Name
) содержит имя каждого коэффициента фиксированных эффектов, столбец 2 (Estimate
) содержит его ориентировочную стоимость и столбец 3 (SE
) содержит стандартную погрешность коэффициента. Столбец 4 (tStat
) содержит - статистическая величина для теста гипотезы, что коэффициент равен 0. Столбец 5 (DF
) и столбец 6 (pValue
) содержите степени свободы и - значение, которые соответствуют - статистическая величина, соответственно. Последние два столбца (Lower
и Upper
) отобразите нижние и верхние пределы, соответственно, 95%-го доверительного интервала для каждого коэффициента фиксированных эффектов.
Random effects covariance parameters
отображает таблицу для каждой сгруппированной переменной (здесь, только factory
), включая его общее количество уровней (20), и тип и оценка параметра ковариации. Здесь, std
указывает на тот fitglme
возвращает стандартное отклонение случайного эффекта, сопоставленного с предиктором фабрики, который имеет ориентировочную стоимость 0,31381. Это также отображает таблицу, содержащую тип параметра ошибок (здесь, квадратный корень из дисперсионного параметра), и его ориентировочная стоимость 1.
Стандартное отображение сгенерировано fitglme
не обеспечивает доверительные интервалы для параметров случайных эффектов. Чтобы вычислить и отобразить эти значения, используйте covarianceParameters
.
Критерием информации о Akaike (AIC) является AIC = –2logLM + 2 (param).
logLM зависит от метода, используемого, чтобы подбирать модель.
Если вы используете 'Laplace'
или 'ApproximateLaplace'
, затем logLM является максимизируемой логарифмической вероятностью.
Если вы используете 'MPL'
, затем logLM является максимизируемой логарифмической вероятностью псевдо данных из итоговой псевдо итерации вероятности.
Если вы используете 'REMPL'
, затем logLM является максимизируемой ограниченной логарифмической вероятностью псевдо данных из итоговой псевдо итерации вероятности.
param является общим количеством параметров, оцененных в модели. Для большинства моделей GLME param равен nc + p + 1, где nc является общим количеством параметров в ковариации случайных эффектов, исключая остаточное отклонение, и p является количеством коэффициентов фиксированных эффектов. Однако, если дисперсионный параметр фиксируется в 1,0 для бинома или распределений Пуассона, то param равен (nc + p).
Байесовым информационным критерием (BIC) является BIC = –2*logLM + ln (neff) (param).
logLM зависит от метода, используемого, чтобы подбирать модель.
Если вы используете 'Laplace'
или 'ApproximateLaplace'
, затем logLM является максимизируемой логарифмической вероятностью.
Если вы используете 'MPL'
, затем logLM является максимизируемой логарифмической вероятностью псевдо данных из итоговой псевдо итерации вероятности.
Если вы используете 'REMPL'
, затем logLM является максимизируемой ограниченной логарифмической вероятностью псевдо данных из итоговой псевдо итерации вероятности.
neff является эффективным количеством наблюдений.
Если вы используете 'MPL'
, 'Laplace'
, или 'ApproximateLaplace'
, затем neff = n, где n является количеством наблюдений.
Если вы используете 'REMPL'
, затем neff = n – p.
param является общим количеством параметров, оцененных в модели. Для большинства моделей GLME param равен nc + p + 1, где nc является общим количеством параметров в ковариации случайных эффектов, исключая остаточное отклонение, и p является количеством коэффициентов фиксированных эффектов. Однако, если дисперсионный параметр фиксируется в 1,0 для бинома или распределений Пуассона, то param равен (nc + p).
Нижнее значение отклонения указывает на лучшую подгонку. Когда значение отклонения уменьшается, и AIC и BIC имеют тенденцию уменьшаться. И AIC и BIC также включают условия штрафа на основе количества оцененных параметров, p. Так, когда количество увеличения параметров, значения AIC и BIC имеют тенденцию увеличиваться также. При сравнении различных моделей модель с самым низким AIC или значением BIC рассматривается как модель оптимальной подгонки.
Для моделей, подбиравших с помощью 'MPL'
и 'REMPL'
, AIC и BIC основаны на логарифмической вероятности (или ограниченной логарифмической вероятности) псевдо данных из итоговой псевдо итерации вероятности. Поэтому прямое сравнение AIC и значений BIC между моделями, подбиравшими с помощью 'MPL'
и 'REMPL'
не является соответствующим.
GeneralizedLinearMixedModel
| covarianceParameters
| fitglme
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.