Класс: GeneralizedLinearModel
(Не Рекомендуемый), Создают обобщенную линейную модель регрессии ступенчатой регрессией
GeneralizedLinearModel.stepwise
не рекомендуется. Используйте stepwiseglm
вместо этого.
mdl = GeneralizedLinearModel.stepwise(tbl,modelspec)
mdl = GeneralizedLinearModel.stepwise(X,y,modelspec)
mdl = GeneralizedLinearModel.stepwise(...,modelspec,Name,Value)
создает обобщенную линейную модель таблицы или массива набора данных mdl
= GeneralizedLinearModel.stepwise(tbl
,modelspec
)tbl
, использование ступенчатой регрессии, чтобы добавить или удалить предикторы. modelspec
стартовая модель для пошаговой процедуры.
создает обобщенную линейную модель ответов mdl
= GeneralizedLinearModel.stepwise(X
,y
,modelspec
)y
к матрице данных X
, использование ступенчатой регрессии, чтобы добавить или удалить предикторы.
создает обобщенную линейную модель с дополнительными опциями, заданными одним или несколькими mdl
= GeneralizedLinearModel.stepwise(...,modelspec
,Name,Value
)Name,Value
парные аргументы.
Обобщенная линейная модель mdl
стандартная линейная модель, если вы не задаете в противном случае с Distribution
пара "имя-значение".
Для других методов, таких как devianceTest
, или свойства GeneralizedLinearModel
возразите, смотрите GeneralizedLinearModel
.
Stepwise regression является систематическим методом для добавления и удаления условий от линейного или обобщенного линейного, основанного на модели на их статистическом значении в объяснении переменной отклика. Метод начинается с первоначальной модели, заданное использование modelspec
, и затем сравнивает объяснительную силу инкрементно больших и меньших моделей.
GeneralizedLinearModel.stepwise
функционируйте использование прямая и обратная ступенчатая регрессия, чтобы определить итоговую модель. На каждом шаге функция ищет условия, чтобы добавить к модели или удалить из основанного на модели на значении 'Criterion'
аргумент пары "имя-значение".
Значение по умолчанию 'Criterion'
для линейной регрессии моделью является 'sse'
. В этом случае, stepwiselm
и step
из LinearModel
используйте p - значение F - статистическая величина к тестовым моделям с и без потенциального термина в каждом шаге. Если бы термин не находится в настоящее время в модели, нулевая гипотеза - то, что термин имел бы нулевой коэффициент, если добавлено к модели. Если существуют достаточные доказательства, чтобы отклонить нулевую гипотезу, функция добавляет термин в модель. С другой стороны, если термин находится в настоящее время в модели, нулевая гипотеза - то, что термин имеет нулевой коэффициент. Если существуют недостаточные доказательства, чтобы отклонить нулевую гипотезу, функция удаляет термин из модели.
Ступенчатая регрессия делает эти шаги когда 'Criterion'
'sse'
:
Подбирайте первоначальную модель.
Исследуйте набор доступных условий не в модели. Если какое-либо из условий имеет p - значения меньше, чем допуск входа (то есть, если бы маловероятно, что термин имел бы нулевой коэффициент, если добавлено к модели), добавьте термин с самым маленьким p - значение и повторите этот шаг; в противном случае перейдите к шагу 3.
Если какой-либо из доступных членов в модели имеет p - значения, больше, чем выходной допуск (то есть, гипотеза нулевого коэффициента не может быть отклонена), удалите термин с самым большим p - значение и возвратитесь к шагу 2; в противном случае закончите процесс.
На любом этапе функция не добавит термин высшего порядка, если модель не будет также включать все условия более низкоуровневые, которые являются подмножествами термина высшего порядка. Например, функция не попытается добавить термин X1:X2^2
если оба X1
и X2^2
уже находятся в модели. Точно так же функция не удалит условия более низкоуровневые, которые являются подмножествами условий высшего порядка, которые остаются в модели. Например, функция не попытается удалить X1
или X2^2
если X1:X2^2
остается в модели.
Значение по умолчанию 'Criterion'
поскольку обобщенной линейной моделью является 'Deviance'
. stepwiseglm
и step
из GeneralizedLinearModel
выполните подобную процедуру для добавления или удаления условий.
Можно задать другие критерии при помощи 'Criterion'
аргумент пары "имя-значение". Например, можно задать изменение в значении критерия информации о Akaike, Байесового информационного критерия, R-squared или настроенного R-squared как критерий, чтобы добавить или удалить условия.
В зависимости от условий, включенных в первоначальную модель и порядок, в котором функция добавляет и удаляет условия, функциональная сила создает различные модели от того же набора потенциальных условий. Функция завершает работу, когда никакой один шаг не улучшает модель. Однако различная первоначальная модель или различная последовательность шагов не гарантируют лучшую подгонку. В этом смысле пошаговые модели локально оптимальны, но не могут быть глобально оптимальными.
Можно также создать пошаговую обобщенную линейную модель с помощью stepwiseglm
.
Используйте fitglm
создать модель с фиксированной спецификацией. Используйте step
, addTerms
, или removeTerms
настраивать подобранную модель.
[1] Collett, D. Моделирование двоичных данных. Нью-Йорк: Chapman & Hall, 2002.
[2] Добсон, A. J. Введение в обобщенные линейные модели. Нью-Йорк: Chapman & Hall, 1990.
[3] Маккуллаг, P. и Дж. А. Нелдер. Обобщенные линейные модели. Нью-Йорк: Chapman & Hall, 1990.