Гауссова модель регрессии ядра использование случайного расширения функции
RegressionKernel
обученный объект модели для Гауссовой регрессии ядра с помощью случайного расширения функции. RegressionKernel
более практично для больших применений данных, которые имеют большие наборы обучающих данных, но могут также быть применены к меньшим наборам данных, которые умещаются в памяти.
В отличие от других моделей регрессии, и для экономичного использования памяти, RegressionKernel
объекты модели не хранят обучающие данные. Однако они действительно хранят информацию, такую как размерность расширенного пробела, масштабного коэффициента ядра и силы регуляризации.
Можно использовать, обучил RegressionKernel
модели, чтобы продолжить обучение с помощью обучающих данных, предскажите ответы для новых данных и вычислите среднеквадратическую ошибку или нечувствительную к эпсилону потерю. Для получения дополнительной информации смотрите resume
, predict
, и loss
.
Создайте RegressionKernel
объект с помощью fitrkernel
функция. Эти функциональные данные о картах в низком мерном пространстве в высокое мерное пространство, затем подбирает линейную модель в высоком мерном пространстве путем минимизации упорядоченной целевой функции. Получение линейной модели в высоком мерном пространстве эквивалентно применению Гауссова ядра к модели в низком мерном пространстве. Доступные модели линейной регрессии включают упорядоченные машины опорных векторов (SVM) и модели регрессии наименьших квадратов.
Epsilon
— Полуширина нечувствительной к эпсилону полосыПоловина ширины нечувствительной к эпсилону полосы, заданной как неотрицательный скаляр.
Если Learner
не 'svm'
, затем Epsilon
пустой массив ([]
).
Типы данных: single
| double
Learner
— Тип модели линейной регрессии'svm'
(значение по умолчанию) | 'leastsquares'
Тип модели линейной регрессии, заданный как 'leastsquares'
или 'svm'
.
В следующей таблице,
x является наблюдением (вектор-строка) от переменных предикторов p.
преобразование наблюдения (вектор-строка) для расширения функции. T (x) сопоставляет x в к высокому мерному пространству ().
β является вектором коэффициентов m.
b является скалярным смещением.
Значение | Алгоритм | Функция потерь | FittedLoss Значение |
---|---|---|---|
'leastsquares' | Линейная регрессия через обычные наименьшие квадраты | Среднеквадратическая ошибка (MSE): | 'mse' |
'svm' | Регрессия машины опорных векторов | Нечувствительный к эпсилону: | 'epsiloninsensitive' |
NumExpansionDimensions
— Количество размерностей расширенного пробелаКоличество размерностей расширенного пробела, заданного как положительное целое число.
Типы данных: single
| double
KernelScale
— Масштабный коэффициент ядраМасштабный коэффициент ядра, заданный как положительная скалярная величина.
Типы данных: single
| double
BoxConstraint
— Ограничение поляОграничение поля, заданное как положительная скалярная величина.
Типы данных: double |
single
Lambda
— Сила срока регуляризацииСила срока регуляризации, заданная как неотрицательный скаляр.
Типы данных: single
| double
FittedLoss
— Функция потерь раньше подбирала линейную модель'epsiloninsensitive'
| 'mse'
Функция потерь раньше подбирала линейную модель, заданную как 'epsiloninsensitive'
или 'mse'
.
Значение | Алгоритм | Функция потерь | Learner Значение |
---|---|---|---|
'epsiloninsensitive' | Регрессия машины опорных векторов | Нечувствительный к эпсилону: | 'svm' |
'mse' | Линейная регрессия через обычные наименьшие квадраты | Среднеквадратическая ошибка (MSE): | 'leastsquares' |
Regularization
— Тип штрафа сложности'lasso (L1)'
| 'ridge (L2)'
Тип штрафа сложности, заданный как 'lasso (L1)'
или 'ridge (L2)'
.
Программное обеспечение составляет целевую функцию для минимизации от суммы средней функции потерь (см. FittedLoss
) и значение регуляризации из этой таблицы.
Значение | Описание |
---|---|
'lasso (L1)' | Лассо (L 1) штраф: |
'ridge (L2)' | Гребень (L 2) штраф: |
λ задает силу срока регуляризации (см. Lambda
).
Программное обеспечение исключает срок смещения (β 0) от штрафа регуляризации.
CategoricalPredictors
— Индексы категориальных предикторов[]
Индексы категориальных предикторов, значение которых всегда пусто ([]
) потому что RegressionKernel
модель не поддерживает категориальные предикторы.
ModelParameters
— Параметры используются в учебной моделиПараметры использовали в обучении RegressionKernel
модель, заданная как структура.
Доступ к полям ModelParameters
использование записи через точку. Например, получите доступ к относительному допуску на линейных коэффициентах и сроке смещения при помощи Mdl.ModelParameters.BetaTolerance
.
Типы данных: struct
PredictorNames
— Имена предиктораПредиктор называет в порядке их внешнего вида в данных о предикторе X
, заданный как массив ячеек из символьных векторов. Длина PredictorNames
равно количеству столбцов в X
.
Типы данных: cell
ExpandedPredictorNames
— Расширенные имена предиктораРасширенные имена предиктора, заданные как массив ячеек из символьных векторов.
Поскольку RegressionKernel
модель не поддерживает категориальные предикторы, ExpandedPredictorNames
и PredictorNames
равны.
Типы данных: cell
ResponseName
— Имя переменной откликаИмя переменной отклика, заданное как вектор символов.
Типы данных: char
ResponseTransform
— Преобразование ответа функционирует, чтобы примениться к предсказанным ответам'none'
| указатель на функциюПреобразование ответа функционирует, чтобы примениться к предсказанным ответам, заданным как 'none'
или указатель на функцию.
Для моделей регрессии ядра и перед преобразованием ответа, предсказанным ответом для наблюдения x (вектор-строка)
преобразование наблюдения для расширения функции.
β соответствует Mdl.Beta
.
b соответствует Mdl.Bias
.
Для функции MATLAB® или функции, которую вы задаете, введите ее указатель на функцию. Например, можно ввести Mdl.ResponseTransform = @function
, где function
принимает числовой вектор исходных ответов и возвращает числовой вектор, одного размера содержащий преобразованные ответы.
Типы данных: char |
function_handle
Обучите модель регрессии ядра длинному массиву при помощи SVM.
Когда вы выполняете вычисления на длинных массивах, MATLAB® использует любого параллельный пул (значение по умолчанию, если у вас есть Parallel Computing Toolbox™), или локальный сеанс работы с MATLAB. Если вы хотите запустить пример с помощью локального сеанса работы с MATLAB, когда у вас есть Parallel Computing Toolbox, можно изменить глобальную среду выполнения при помощи mapreducer
функция.
Создайте datastore, который ссылается на местоположение папки с данными. Данные могут содержаться в одном файле, наборе файлов или целой папке. Обработайте 'NA'
значения как недостающие данные так, чтобы datastore
заменяет их на NaN
значения. Выберите подмножество переменных, чтобы использовать. Составьте длинную таблицу сверху datastore.
varnames = {'ArrTime','DepTime','ActualElapsedTime'}; ds = datastore('airlinesmall.csv','TreatAsMissing','NA',... 'SelectedVariableNames',varnames); t = tall(ds);
Starting parallel pool (parpool) using the 'local' profile ... Connected to the parallel pool (number of workers: 12).
Задайте DepTime
и ArrTime
как переменные предикторы (X
) и ActualElapsedTime
как переменная отклика (Y
). Выберите наблюдения для который ArrTime
позже, чем DepTime
.
daytime = t.ArrTime>t.DepTime; Y = t.ActualElapsedTime(daytime); % Response data X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data
Стандартизируйте переменные предикторы.
Z = zscore(X); % Standardize the data
Обучите Гауссову модель регрессии ядра по умолчанию со стандартизированными предикторами. Извлеките подходящие сводные данные, чтобы определить, как хорошо алгоритм оптимизации подбирает модель к данным.
[Mdl,FitInfo] = fitrkernel(Z,Y)
Found 6 chunks. |========================================================================= | Solver | Iteration / | Objective | Gradient | Beta relative | | | Data Pass | | magnitude | change | |========================================================================= | INIT | 0 / 1 | 4.307833e+01 | 4.345788e-02 | NaN | | LBFGS | 0 / 2 | 3.705713e+01 | 1.577301e-02 | 9.988252e-01 | | LBFGS | 1 / 3 | 3.704022e+01 | 3.082836e-02 | 1.338410e-03 | | LBFGS | 2 / 4 | 3.701398e+01 | 3.006488e-02 | 1.116070e-03 | | LBFGS | 2 / 5 | 3.698797e+01 | 2.870642e-02 | 2.234599e-03 | | LBFGS | 2 / 6 | 3.693687e+01 | 2.625581e-02 | 4.479069e-03 | | LBFGS | 2 / 7 | 3.683757e+01 | 2.239620e-02 | 8.997877e-03 | | LBFGS | 2 / 8 | 3.665038e+01 | 1.782358e-02 | 1.815682e-02 | | LBFGS | 3 / 9 | 3.473411e+01 | 4.074480e-02 | 1.778166e-01 | | LBFGS | 4 / 10 | 3.684246e+01 | 1.608942e-01 | 3.294968e-01 | | LBFGS | 4 / 11 | 3.441595e+01 | 8.587703e-02 | 1.420892e-01 | | LBFGS | 5 / 12 | 3.377755e+01 | 3.760006e-02 | 4.640134e-02 | | LBFGS | 6 / 13 | 3.357732e+01 | 1.912644e-02 | 3.842057e-02 | | LBFGS | 7 / 14 | 3.334081e+01 | 3.046709e-02 | 6.211243e-02 | | LBFGS | 8 / 15 | 3.309239e+01 | 3.858085e-02 | 6.411356e-02 | | LBFGS | 9 / 16 | 3.276577e+01 | 3.612292e-02 | 6.938579e-02 | | LBFGS | 10 / 17 | 3.234029e+01 | 2.734959e-02 | 1.144307e-01 | | LBFGS | 11 / 18 | 3.205763e+01 | 2.545990e-02 | 7.323180e-02 | | LBFGS | 12 / 19 | 3.183341e+01 | 2.472411e-02 | 3.689625e-02 | | LBFGS | 13 / 20 | 3.169307e+01 | 2.064613e-02 | 2.998555e-02 | |========================================================================= | Solver | Iteration / | Objective | Gradient | Beta relative | | | Data Pass | | magnitude | change | |========================================================================= | LBFGS | 14 / 21 | 3.146896e+01 | 1.788395e-02 | 5.967293e-02 | | LBFGS | 15 / 22 | 3.118171e+01 | 1.660696e-02 | 1.124062e-01 | | LBFGS | 16 / 23 | 3.106224e+01 | 1.506147e-02 | 7.947037e-02 | | LBFGS | 17 / 24 | 3.098395e+01 | 1.564561e-02 | 2.678370e-02 | | LBFGS | 18 / 25 | 3.096029e+01 | 4.464104e-02 | 4.547148e-02 | | LBFGS | 19 / 26 | 3.085475e+01 | 1.442800e-02 | 1.677268e-02 | | LBFGS | 20 / 27 | 3.078140e+01 | 1.906548e-02 | 2.275185e-02 | |========================================================================|
Mdl = RegressionKernel PredictorNames: {'x1' 'x2'} ResponseName: 'Y' Learner: 'svm' NumExpansionDimensions: 64 KernelScale: 1 Lambda: 8.5385e-06 BoxConstraint: 1 Epsilon: 5.9303 Properties, Methods
FitInfo = struct with fields:
Solver: 'LBFGS-tall'
LossFunction: 'epsiloninsensitive'
Lambda: 8.5385e-06
BetaTolerance: 1.0000e-03
GradientTolerance: 1.0000e-05
ObjectiveValue: 30.7814
GradientMagnitude: 0.0191
RelativeChangeInBeta: 0.0228
FitTime: 93.3721
History: [1x1 struct]
Mdl
RegressionKernel
модель. Чтобы смотреть ошибку регрессии, можно передать Mdl
и обучающие данные или новые данные к loss
функция. Или, можно передать Mdl
и новые данные о предикторе к predict
функция, чтобы предсказать ответы для новых наблюдений. Можно также передать Mdl
и обучающие данные к resume
функция, чтобы продолжить обучение.
FitInfo
массив структур, содержащий информацию об оптимизации. Используйте FitInfo
определить, являются ли измерения завершения оптимизации удовлетворительными.
Для улучшенной точности можно увеличить максимальное число итераций оптимизации ('IterationLimit'
) и уменьшите значения допуска ('BetaTolerance'
и 'GradientTolerance'
) при помощи аргументов пары "имя-значение" fitrkernel
. Выполнение так может улучшить меры как ObjectiveValue
и RelativeChangeInBeta
в FitInfo
. Можно также оптимизировать параметры модели при помощи 'OptimizeHyperparameters'
аргумент пары "имя-значение".
Возобновите обучение Гауссова модель регрессии ядра для большего количества итераций, чтобы улучшить потерю регрессии.
Загрузите carbig
набор данных.
load carbig
Задайте переменные предикторы (X
) и переменная отклика (Y
).
X = [Acceleration,Cylinders,Displacement,Horsepower,Weight]; Y = MPG;
Удалите строки X
и Y
где любой массив имеет NaN
значения. Удаление строк с NaN
значения перед передающими данными к fitrkernel
может ускорить обучение и уменьшать использование памяти.
R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5);
Y = R(:,end);
Зарезервируйте 10% наблюдений как выборка затяжки. Извлеките обучение и протестируйте индексы из определения раздела.
rng(10) % For reproducibility N = length(Y); cvp = cvpartition(N,'Holdout',0.1); idxTrn = training(cvp); % Training set indices idxTest = test(cvp); % Test set indices
Стандартизируйте обучающие данные и обучите модель регрессии ядра. Установите предел итерации к 5 и задайте 'Verbose',1
отобразить диагностическую информацию.
Xtrain = X(idxTrn,:); Ytrain = Y(idxTrn); [Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data tr_sigma(tr_sigma==0) = 1; Mdl = fitrkernel(Ztrain,Ytrain,'IterationLimit',5,'Verbose',1)
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 5.691016e+00 | 0.000000e+00 | 5.852758e-02 | | 0 | | LBFGS | 1 | 1 | 5.086537e+00 | 8.000000e+00 | 5.220869e-02 | 9.846711e-02 | 256 | | LBFGS | 1 | 2 | 3.862301e+00 | 5.000000e-01 | 3.796034e-01 | 5.998808e-01 | 256 | | LBFGS | 1 | 3 | 3.460613e+00 | 1.000000e+00 | 3.257790e-01 | 1.615091e-01 | 256 | | LBFGS | 1 | 4 | 3.136228e+00 | 1.000000e+00 | 2.832861e-02 | 8.006254e-02 | 256 | | LBFGS | 1 | 5 | 3.063978e+00 | 1.000000e+00 | 1.475038e-02 | 3.314455e-02 | 256 | |=================================================================================================================|
Mdl = RegressionKernel ResponseName: 'Y' Learner: 'svm' NumExpansionDimensions: 256 KernelScale: 1 Lambda: 0.0028 BoxConstraint: 1 Epsilon: 0.8617 Properties, Methods
Mdl
a RegressionKernel
модель.
Стандартизируйте тестовые данные с помощью того же среднего и стандартного отклонения столбцов обучающих данных. Оцените нечувствительную к эпсилону ошибку для набора тестов.
Xtest = X(idxTest,:); Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data Ytest = Y(idxTest); L = loss(Mdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
L = 2.0674
Продолжите обучение модель при помощи resume
. Эта функция продолжает обучение с теми же опциями, используемыми в учебном Mdl
.
UpdatedMdl = resume(Mdl,Ztrain,Ytrain);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 3.063978e+00 | 0.000000e+00 | 1.475038e-02 | | 256 | | LBFGS | 1 | 1 | 3.007822e+00 | 8.000000e+00 | 1.391637e-02 | 2.603966e-02 | 256 | | LBFGS | 1 | 2 | 2.817171e+00 | 5.000000e-01 | 5.949008e-02 | 1.918084e-01 | 256 | | LBFGS | 1 | 3 | 2.807294e+00 | 2.500000e-01 | 6.798867e-02 | 2.973097e-02 | 256 | | LBFGS | 1 | 4 | 2.791060e+00 | 1.000000e+00 | 2.549575e-02 | 1.639328e-02 | 256 | | LBFGS | 1 | 5 | 2.767821e+00 | 1.000000e+00 | 6.154419e-03 | 2.468903e-02 | 256 | | LBFGS | 1 | 6 | 2.738163e+00 | 1.000000e+00 | 5.949008e-02 | 9.476263e-02 | 256 | | LBFGS | 1 | 7 | 2.719146e+00 | 1.000000e+00 | 1.699717e-02 | 1.849972e-02 | 256 | | LBFGS | 1 | 8 | 2.705941e+00 | 1.000000e+00 | 3.116147e-02 | 4.152590e-02 | 256 | | LBFGS | 1 | 9 | 2.701162e+00 | 1.000000e+00 | 5.665722e-03 | 9.401466e-03 | 256 | | LBFGS | 1 | 10 | 2.695341e+00 | 5.000000e-01 | 3.116147e-02 | 4.968046e-02 | 256 | | LBFGS | 1 | 11 | 2.691277e+00 | 1.000000e+00 | 8.498584e-03 | 1.017446e-02 | 256 | | LBFGS | 1 | 12 | 2.689972e+00 | 1.000000e+00 | 1.983003e-02 | 9.938921e-03 | 256 | | LBFGS | 1 | 13 | 2.688979e+00 | 1.000000e+00 | 1.416431e-02 | 6.606316e-03 | 256 | | LBFGS | 1 | 14 | 2.687787e+00 | 1.000000e+00 | 1.621956e-03 | 7.089542e-03 | 256 | | LBFGS | 1 | 15 | 2.686539e+00 | 1.000000e+00 | 1.699717e-02 | 1.169701e-02 | 256 | | LBFGS | 1 | 16 | 2.685356e+00 | 1.000000e+00 | 1.133144e-02 | 1.069310e-02 | 256 | | LBFGS | 1 | 17 | 2.685021e+00 | 5.000000e-01 | 1.133144e-02 | 2.104248e-02 | 256 | | LBFGS | 1 | 18 | 2.684002e+00 | 1.000000e+00 | 2.832861e-03 | 6.175231e-03 | 256 | | LBFGS | 1 | 19 | 2.683507e+00 | 1.000000e+00 | 5.665722e-03 | 3.724026e-03 | 256 | | LBFGS | 1 | 20 | 2.683343e+00 | 5.000000e-01 | 5.665722e-03 | 9.549119e-03 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 21 | 2.682897e+00 | 1.000000e+00 | 5.665722e-03 | 7.172867e-03 | 256 | | LBFGS | 1 | 22 | 2.682682e+00 | 1.000000e+00 | 2.832861e-03 | 2.587726e-03 | 256 | | LBFGS | 1 | 23 | 2.682485e+00 | 1.000000e+00 | 2.832861e-03 | 2.953648e-03 | 256 | | LBFGS | 1 | 24 | 2.682326e+00 | 1.000000e+00 | 2.832861e-03 | 7.777294e-03 | 256 | | LBFGS | 1 | 25 | 2.681914e+00 | 1.000000e+00 | 2.832861e-03 | 2.778555e-03 | 256 | | LBFGS | 1 | 26 | 2.681867e+00 | 5.000000e-01 | 1.031085e-03 | 3.638352e-03 | 256 | | LBFGS | 1 | 27 | 2.681725e+00 | 1.000000e+00 | 5.665722e-03 | 1.515199e-03 | 256 | | LBFGS | 1 | 28 | 2.681692e+00 | 5.000000e-01 | 1.314940e-03 | 1.850055e-03 | 256 | | LBFGS | 1 | 29 | 2.681625e+00 | 1.000000e+00 | 2.832861e-03 | 1.456903e-03 | 256 | | LBFGS | 1 | 30 | 2.681594e+00 | 5.000000e-01 | 2.832861e-03 | 8.704875e-04 | 256 | | LBFGS | 1 | 31 | 2.681581e+00 | 5.000000e-01 | 8.498584e-03 | 3.934768e-04 | 256 | | LBFGS | 1 | 32 | 2.681579e+00 | 1.000000e+00 | 8.498584e-03 | 1.847866e-03 | 256 | | LBFGS | 1 | 33 | 2.681553e+00 | 1.000000e+00 | 9.857038e-04 | 6.509825e-04 | 256 | | LBFGS | 1 | 34 | 2.681541e+00 | 5.000000e-01 | 8.498584e-03 | 6.635528e-04 | 256 | | LBFGS | 1 | 35 | 2.681499e+00 | 1.000000e+00 | 5.665722e-03 | 6.194735e-04 | 256 | | LBFGS | 1 | 36 | 2.681493e+00 | 5.000000e-01 | 1.133144e-02 | 1.617763e-03 | 256 | | LBFGS | 1 | 37 | 2.681473e+00 | 1.000000e+00 | 9.869233e-04 | 8.418484e-04 | 256 | | LBFGS | 1 | 38 | 2.681469e+00 | 1.000000e+00 | 5.665722e-03 | 1.069722e-03 | 256 | | LBFGS | 1 | 39 | 2.681432e+00 | 1.000000e+00 | 2.832861e-03 | 8.501930e-04 | 256 | | LBFGS | 1 | 40 | 2.681423e+00 | 2.500000e-01 | 1.133144e-02 | 9.543716e-04 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 41 | 2.681416e+00 | 1.000000e+00 | 2.832861e-03 | 8.763251e-04 | 256 | | LBFGS | 1 | 42 | 2.681413e+00 | 5.000000e-01 | 2.832861e-03 | 4.101888e-04 | 256 | | LBFGS | 1 | 43 | 2.681403e+00 | 1.000000e+00 | 5.665722e-03 | 2.713209e-04 | 256 | | LBFGS | 1 | 44 | 2.681392e+00 | 1.000000e+00 | 2.832861e-03 | 2.115241e-04 | 256 | | LBFGS | 1 | 45 | 2.681383e+00 | 1.000000e+00 | 2.832861e-03 | 2.872858e-04 | 256 | | LBFGS | 1 | 46 | 2.681374e+00 | 1.000000e+00 | 8.498584e-03 | 5.771001e-04 | 256 | | LBFGS | 1 | 47 | 2.681353e+00 | 1.000000e+00 | 2.832861e-03 | 3.160871e-04 | 256 | | LBFGS | 1 | 48 | 2.681334e+00 | 5.000000e-01 | 8.498584e-03 | 1.045502e-03 | 256 | | LBFGS | 1 | 49 | 2.681314e+00 | 1.000000e+00 | 7.878714e-04 | 1.505118e-03 | 256 | | LBFGS | 1 | 50 | 2.681306e+00 | 1.000000e+00 | 2.832861e-03 | 4.756894e-04 | 256 | | LBFGS | 1 | 51 | 2.681301e+00 | 1.000000e+00 | 1.133144e-02 | 3.664873e-04 | 256 | | LBFGS | 1 | 52 | 2.681288e+00 | 1.000000e+00 | 2.832861e-03 | 1.449821e-04 | 256 | | LBFGS | 1 | 53 | 2.681287e+00 | 2.500000e-01 | 1.699717e-02 | 2.357176e-04 | 256 | | LBFGS | 1 | 54 | 2.681282e+00 | 1.000000e+00 | 5.665722e-03 | 2.046663e-04 | 256 | | LBFGS | 1 | 55 | 2.681278e+00 | 1.000000e+00 | 2.832861e-03 | 2.546349e-04 | 256 | | LBFGS | 1 | 56 | 2.681276e+00 | 2.500000e-01 | 1.307940e-03 | 1.966786e-04 | 256 | | LBFGS | 1 | 57 | 2.681274e+00 | 5.000000e-01 | 1.416431e-02 | 1.005310e-04 | 256 | | LBFGS | 1 | 58 | 2.681271e+00 | 5.000000e-01 | 1.118892e-03 | 1.147324e-04 | 256 | | LBFGS | 1 | 59 | 2.681269e+00 | 1.000000e+00 | 2.832861e-03 | 1.332914e-04 | 256 | | LBFGS | 1 | 60 | 2.681268e+00 | 2.500000e-01 | 1.132045e-03 | 5.441369e-05 | 256 | |=================================================================================================================|
Оцените нечувствительную к эпсилону ошибку для набора тестов с помощью обновленной модели.
UpdatedL = loss(UpdatedMdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
UpdatedL = 1.8933
Ошибка регрессии уменьшается фактором приблизительно 0.08
после resume
обновляет модель регрессии с большим количеством итераций.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.