Сгенерируйте форму волны VHT-STF
Создайте объект настройки VHT с пропускной способностью канала на 80 МГц. Сгенерируйте и постройте форму волны VHT-STF.
cfgVHT = wlanVHTConfig; cfgVHT.ChannelBandwidth = 'CBW80'; vstfOut = wlanVHTSTF(cfgVHT); size(vstfOut); plot(abs(vstfOut)) xlabel('Samples') ylabel('Amplitude')

Форма волны на 80 МГц является одним символом OFDM с 320 комплексными временными интервалами выходные выборки. Форма волны содержит повторяющийся короткий учебный полевой шаблон.
cfg — Настройка форматаwlanVHTConfig объектНастройка формата, заданная как wlanVHTConfig объект. wlanVHTSTF функционируйте использует обозначенные свойства объектов.
ChannelBandwidth — Пропускная способность канала 'CBW80' (значение по умолчанию) | 'CBW20' | 'CBW40' | 'CBW160'Пропускная способность канала, заданная как 'CBW20', 'CBW40', 'CBW80', или 'CBW160'. Если передача имеет многого пользователя, та же пропускная способность канала применяется ко всем пользователям. Значение по умолчанию 'CBW80' устанавливает пропускную способность канала на 80 МГц.
Типы данных: char | string
NumTransmitAntennas — Количество антенн передачи (значение по умолчанию) | целое число в области значений [1, 8]Количество антенн передачи, заданных как целое число в области значений [1, 8].
Типы данных: double
NumSpaceTimeStreams — Количество пространственно-временных потоковКоличество пространственно-временных потоков в передаче, заданной как скаляр или вектор.
Для отдельного пользователя количество пространственно-временных потоков является скалярным целым числом от 1 до 8.
Для многого пользователя количество пространственно-временных потоков является 1 NUsers вектором целых чисел от 1 до 4, где длина вектора, NUsers, является целым числом от 1 до 4.
Пример: [1 3 2] количество пространственно-временных потоков для каждого пользователя.
Сумма пространственно-временных потоковых элементов вектора не должна превышать восемь.
Типы данных: double
SpatialMapping — Пространственная схема отображения'Direct' (значение по умолчанию) | 'Hadamard' | 'Fourier' | 'Custom'Пространственная схема отображения, заданная как 'Direct'Адамар, 'Fourier', или 'Custom'. Значение по умолчанию 'Direct' применяется когда NumTransmitAntennas и NumSpaceTimeStreams равны.
Типы данных: char | string
SpatialMappingMatrix — Пространственная матрица отображенияПространственная матрица отображения, заданная как скаляр, матрица или трехмерный массив. Используйте это свойство применить beamforming держащаяся матрица, и вращать и масштабировать выходной вектор картопостроителя созвездия. Если применимо масштабируйтесь, пространственно-временной кодер блока вывел вместо этого. SpatialMappingMatrix применяется когда SpatialMapping свойство установлено в 'Custom'. Для получения дополнительной информации смотрите Станд. IEEE 802.11™-2012, Раздел 20.3.11.11.2.
Когда задано как скаляр, постоянное значение применяется ко всем поднесущим.
Когда задано как матрица, размером должен быть NSTS_Total-by-NT. Пространственная матрица отображения применяется ко всем поднесущим. NSTS_Total является суммой пространственно-временных потоков для всех пользователей, и NT является количеством антенн передачи.
Когда задано как трехмерный массив, размером должен быть NST-by-NSTS_Total-by-NT. NST является суммой занятых данных (NSD) и пилот (NSP) поднесущие, как определено ChannelBandwidth. NSTS_Total является суммой пространственно-временных потоков для всех пользователей. NT является количеством антенн передачи.
ST N увеличивается с пропускной способностью канала.
ChannelBandwidth | Количество занятых поднесущих (ST N) | Количество поднесущих данных (SD N) | Количество экспериментальных поднесущих (SP N) |
|---|---|---|---|
'CBW20' | 56 | 52 | 4 |
'CBW40' | 114 | 108 | 6 |
'CBW80' | 242 | 234 | 8 |
'CBW160' | 484 | 468 | 16 |
Функция вызова нормирует пространственную матрицу отображения для каждой поднесущей.
Пример: [0.5 0.3 0.4; 0.4 0.5 0.8] представляет пространственную матрицу отображения, имеющую два пространственно-временных потока и три антенны передачи.
Типы данных: double
Поддержка комплексного числа: Да
y — Форма волны временного интервала VHT-STFФорма волны временного интервала VHT-STF, возвращенная как NS-by-NT матрица. NS является количеством выборок временного интервала, и NT является количеством антенн передачи.
NS пропорционален пропускной способности канала.
ChannelBandwidth | NS |
|---|---|
'CBW20' | 80 |
'CBW40' | 160 |
'CBW80' | 320 |
'CBW160' | 640 |
См., что VHT-STF Обрабатывает для деталей генерации сигналов.
Типы данных: double
Поддержка комплексного числа: Да
Короткое учебное поле очень высокой пропускной способности (VHT-STF) является одним символом OFDM (4 μs в длине), который используется, чтобы улучшить автоматическую оценку управления усилением передачу MIMO. Это расположено между VHT-SIG-A и фрагментами VHT-LTF пакета VHT.

Последовательность частотного диапазона, используемая, чтобы создать VHT-STF для передачи на 20 МГц, идентична последовательности L-STF. Дублирующиеся последовательности L-STF являются переключенной частотой и фаза, вращаемая, чтобы поддержать передачи VHT для 40 МГц, 80 МГц, и пропускную способность канала на 160 МГц. По сути, L-STF и HT-STF являются подмножествами VHT-STF.
VHT-STF задан в IEEE® Std 802.11ac™-2013, Раздел 22.3.8.3.4.
[1] Станд. IEEE 802.11ac™-2013 Стандарт IEEE для Информационных технологий — Телекоммуникаций и обмена информацией между системами — Локальными сетями и городскими компьютерными сетями — Конкретными требованиями — Часть 11: Беспроводное Среднее управление доступом (MAC) LAN и Физический уровень (PHY) Спецификации — Поправка 4: Улучшения для Очень Высокой Пропускной способности для Операции в Полосах ниже 6 ГГц.
[1] 802.11ac Станд. IEEE 2 013 Адаптированных и переизданные с разрешением от IEEE. Авторское право IEEE 2013. Все права защищены.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.