LU-разложение матрицы
[___] = lu( задает пороги для вертящейся стратегии, используемой S,thresh)lu использование любой из предыдущих комбинаций выходного аргумента. В зависимости от количества заданных выходных аргументов, значение по умолчанию и требования для thresh вход отличается. Смотрите thresh описание аргумента для деталей.
[___] = lu(___, возвращает outputForm)P и Q в форме, заданной outputForm. Задайте outputForm как 'vector' возвратить P и Q как векторы сочетания. Можно использовать любую из комбинаций входных аргументов в предыдущих синтаксисах.
LU-факторизация вычисляется с помощью варианта Исключения Гаусса. Вычисление точного решения зависит от значения числа обусловленности исходного матричного cond(A). Если матрица имеет большое число обусловленности (это почти сингулярно), то вычисленная факторизация не может быть точной.
LU-факторизация является ключевым шагом в получении инверсии с inv и определитель с det. Это - также основание для решения для линейного уравнения или матричного деления, полученного с операторами \ и /. Это обязательно означает что числовые ограничения lu также присутствуют в этих зависимых функциях.