Сгенерируйте код и разверните контроллер в цели в реальном времени

Программное обеспечение Model Predictive Control Toolbox™ обеспечивает функциональность генерации кода для контроллеров, спроектированных в MATLAB® или Simulink®.

Генерация кода в MATLAB

После разработки контроллера MPC в MATLAB можно сгенерировать код С с помощью MATLAB Coder™ и развернуть его для управления в режиме реального времени.

Сгенерировать код для вычисления оптимального MPC управления перемещается для неявного или явного линейного контроллера MPC:

  1. Сгенерируйте структуры данных от диспетчера MPC или явного контроллера MPC, использующего getCodeGenerationData.

  2. Чтобы проверить, что ваш контроллер приводит к ожидаемым результатам с обратной связью, симулируйте его с помощью mpcmoveCodeGeneration вместо mpcmove.

  3. Сгенерируйте код для mpcmoveCodeGeneration использование codegen. Этот шаг требует программного обеспечения MATLAB Coder.

Для примера смотрите, Генерируют Код, Чтобы Вычислить Оптимальные Перемещения MPC в MATLAB.

Можно также сгенерировать код для нелинейных контроллеров MPC, которые используют fmincon по умолчанию решатель с алгоритмом SQP. Сгенерировать код для вычисления оптимального управления перемещается для нелинейного контроллера MPC:

  1. Сгенерируйте структуры данных от нелинейного диспетчера MPC, использующего getCodeGenerationData.

  2. Чтобы проверить, что ваш контроллер приводит к ожидаемым результатам с обратной связью, симулируйте его с помощью nlmpcmoveCodeGeneration вместо nlmpcmove.

  3. Сгенерируйте код для nlmpcmoveCodeGeneration использование codegen. Этот шаг требует программного обеспечения MATLAB Coder.

Генерация кода в Simulink

После разработки контроллера в Simulink с помощью любого из блоков MPC можно сгенерировать код и развернуть его для управления в режиме реального времени. Можно развернуть контроллеры во все цели, поддержанные следующими продуктами:

  • Simulink Coder

  • Embedded Coder®

  • Simulink PLC Coder™

  • Simulink Real-Time™

Можно сгенерировать код для любого из блоков Simulink Model Predictive Control Toolbox.

Типы контроллеровБлоки
Неявные контроллеры MPC

MPC Controller

Явные контроллеры MPC

Explicit MPC Controller

Запланированные на усиление контроллеры MPC

Multiple MPC Controllers

Multiple Explicit MPC Controllers

Адаптивные контроллеры MPC

Adaptive MPC Controller

Контроллеры MPC для автомобильных приложений

Adaptive Cruise Control System

Lane Keeping Assist System

Path Following Control System

Нелинейные контроллеры MPC то использование fmincon с SQP

Nonlinear MPC Controller

Для получения дополнительной информации о генерации кода смотрите Симуляцию и Генерацию кода Используя Simulink Coder и Генерацию Симуляции и Структурированного текста Используя Simulink PLC Coder.

Примечание

MPC Controller, Explicit MPC Controller, Adaptive MPC Controller и блоки Nonlinear MPC Controller реализованы с помощью блока MATLAB function. Чтобы видеть структуру, щелкните правой кнопкой по блоку и выберите Mask> Look Under Mask. Затем откройте подсистему MPC внизу.

Примечание

Если ваш нелинейный диспетчер MPC использует дополнительные параметры, необходимо также сгенерировать код для блока Bus Creator, соединенного с входным портом params блока Nonlinear MPC Controller. Для этого поместите Nonlinear MPC Controller и блоки Bus Creator в подсистеме, и сгенерируйте код для той подсистемы.

Выборка уровня в режиме реального времени среда

Уровень выборки, которого контроллер может достигнуть в окружении реального времени, системно-зависим. Например, для типичного маленького приложения управления MIMO, работающего на Simulink Real-Time, шаг расчета может составить целых 1-10 мс для линейного MPC и 100-1000 мс для нелинейного MPC. Чтобы определить шаг расчета, сначала протестируйте менее - агрессивный контроллер, выборка которого уровня производит приемлемую производительность на цели. Затем уменьшите шаг расчета и контролируйте время выполнения контроллера. Можно далее уменьшить шаг расчета, пока оптимизация безопасно завершается в каждый период выборки под нормальными условиями работы объекта. Чтобы уменьшать шаг расчета, можно также рассмотреть использование:

  • Явный MPC. В то время как у явных контроллеров MPC есть более быстрое время выполнения, у них также есть больший объем потребляемой памяти, поскольку они хранят предварительно вычисленные законы о надзоре. Для получения дополнительной информации см. Явный Проект MPC.

  • Субоптимальное решение QP после конкретного количества максимальных итераций решателя. Для получения дополнительной информации смотрите Субоптимальное Решение QP.

Совет

Более низкий шаг расчета контроллера не обязательно обеспечивает лучшую производительность. На самом деле вы хотите выбрать шаг расчета, который мал достаточно, чтобы дать вам хорошую производительность, но не меньший. В течение того же времени предсказания меньшие шаги расчета приводят к большим шагам предсказания, который в свою очередь производит больший объем потребляемой памяти и более комплексную задачу оптимизации.

Конструкция QP задач для сгенерированного кода C

В каждом контрольном интервале неявный или адаптивный контроллер MPC создает новую задачу QP, которая описана как:

Minx(12xHx+fx)

подвергните линейным ограничениям неравенства

Axb

где

  • x является вектором решения.

  • H является матрицей Гессиана.

  • A является матрицей линейных ограничительных коэффициентов.

  • f и b являются векторами.

В сгенерированном коде C следующие матрицы используются, чтобы обеспечить H, A, f и b. В зависимости от типа и настройки контроллера MPC, эти матрицы являются или постоянными или регенерированы в каждом контрольном интервале.

Постоянная матрицаРазмерЦельНеявный MPCНеявный MPC с онлайновой настройкой весаАдаптивный MPC или MPC LTV
HinvNM-by-NMИнверсия матрицы Гессиана, HПостоянныйРегенерированныйРегенерированный
LinvNM-by-NMИнверсия нижнего треугольного разложения Холесского H
AcNC-by-NMЛинейные ограничительные коэффициенты, AПостоянный
KxNxqp (NM –1)Используемый, чтобы сгенерировать fРегенерированный
Krp *Ny - (NM –1)
Ku1Nmv (NM –1)
Kv(Nmd +1) * (p +1) (NM –1)
Kutp *Nmv - (NM –1)
MlimNC-by-1Используемый, чтобы сгенерировать bПостоянныйПостоянный, кроме тех случаев, когда существуют пользовательские ограничения
MxNC-by-NxqpРегенерированный
Mu1NC-by-Nmv
MvNC (Nmd +1) * (p +1)

Здесь:

  • p является горизонтом предсказания.

  • Nmv является количеством переменных, которыми управляют.

  • Nmd является количеством измеренных воздействий.

  • Ny является количеством выходных переменных.

  • NM является количеством переменных оптимизации (m *Nmv+1, где m является горизонтом управления).

  • Nxqp является количеством состояний, используемых в проблеме QP; то есть, общее количество состояний объекта и состояний возмущения.

  • NC является общим количеством ограничений.

В каждом контрольном интервале сгенерированный код C вычисляет f и b как:

f=Kxxq+Krrp+Ku1ml+Kvvp+Kutut

b=(Mlim+Mxxq+Mu1ml+Mvvp)

где

  • xq является вектором объекта и состояний возмущения, оцененных Фильтром Калмана.

  • ml является переменной move, которой управляют, из предыдущего контрольного интервала.

  • ut является переменной целью, которой управляют.

  • vp является последовательностью измеренных сигналов воздействия через горизонт предсказания.

  • rp является последовательностью ссылочных сигналов через горизонт предсказания.

Примечание

При генерации кода в MATLAB, getCodeGenerationData команда генерирует эти матрицы и возвращает их в configData.

Генерация кода для пользовательских решателей QP

Можно сгенерировать код для линейных контроллеров MPC, которые используют пользовательский решатель QP, написанный или в C или во Встроенном MATLAB®. Диспетчер вызывает этот решатель вместо встроенного решателя QP в каждом контрольном интервале.

Для примера смотрите, Симулируют и Генерируют Код для Контроллера MPC с Пользовательским Решателем QP. Для получения дополнительной информации о пользовательских решателях QP смотрите Пользовательский Решатель QP.

Смотрите также

Функции

Блоки

Похожие темы