Системный объект: поэтапный. OmnidirectionalMicrophoneElement
Пакет: поэтапный
Направленность элемента ненаправленного микрофона
D = directivity(H,FREQ,ANGLE)
D = directivity(
возвращает Направленность (dBi) элемента ненаправленного микрофона, H
,FREQ
,ANGLE
)H
, на частотах, заданных FREQ
и в направляющих углах задан ANGLE
.
H
— Элемент ненаправленного микрофонаЭлемент ненаправленного микрофона, указанный как phased.OmnidirectionalMicrophoneElement
Системный объект.
Пример: H = phased.OmnidirectionalMicrophoneElement
FREQ
— Частота для вычислительной направленности и шаблоновЧастоты для вычислительной направленности и шаблонов в виде положительной скалярной величины или 1 L вектором-строкой с действительным знаком. Единицы частоты находятся в герц.
Для антенны, микрофона, или гидрофона гидролокатора или элемента проектора, FREQ
должен лечь в области значений значений, заданных FrequencyRange
или FrequencyVector
свойство элемента. В противном случае элемент не производит ответа, и направленность возвращена как –Inf
. Большинство элементов использует FrequencyRange
свойство за исключением phased.CustomAntennaElement
и phased.CustomMicrophoneElement
, которые используют FrequencyVector
свойство.
Для массива элементов, FREQ
должен лечь в частотном диапазоне элементов, которые составляют массив. В противном случае массив не производит ответа, и направленность возвращена как –Inf
.
Пример: [1e8 2e6]
Типы данных: double
ANGLE
— Углы для вычислительной направленностиУглы для вычислительной направленности в виде 1 M вектором-строкой с действительным знаком или 2 M матрицей с действительным знаком, где M является количеством угловых направлений. Угловые модули в градусах. Если ANGLE
2 M матрицей, затем каждый столбец задает направление в азимуте и вертикальном изменении, [az;el]
. Угол азимута должен находиться между-180 ° и 180 °. Угол вертикального изменения должен находиться между-90 ° и 90 °.
Если ANGLE
1 M вектором, затем каждая запись представляет угол азимута с углом вертикального изменения, принятым, чтобы быть нулем.
Угол азимута является углом между x - ось и проекцией вектора направления на плоскость xy. Этот угол положителен, когда измерено от x - оси к y - ось. Угол вертикального изменения является углом между вектором направления и плоскостью xy. Этот угол положителен, когда измерено к z - ось. Смотрите Углы Азимута и Вертикального изменения.
Пример: [45 60; 0 10]
Типы данных: double
D
— НаправленностьНаправленность, возвращенная как M-by-L матрица. Каждая строка соответствует одному из углов M, заданных ANGLE
. Каждый столбец соответствует одному из значений частоты L, заданных в FREQ
. Модули направленности находятся в dBi, где dBi задан как усиление элемента относительно изотропного теплоотвода.
Вычислите направленность элемента ненаправленного микрофона для нескольких различных направлений.
Создайте системный объект элемента ненаправленного микрофона.
myMic = phased.OmnidirectionalMicrophoneElement();
Выберите углы интереса в равных нулю степенях набора угла постоянного вертикального изменения. Выберите семь углов азимута, сосредоточенных в опорном направлении (нулевой азимут степеней, и обнулите вертикальное изменение степеней). Наконец, установите желаемую частоту на 1 кГц.
ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0]; freq = 1000;
Вычислите направленность вдоль постоянного сокращения вертикального изменения.
d = directivity(myMic,freq,ang)
d = 7×1
0
0
0
0
0
0
0
Затем выберите углы интереса быть под постоянным углом азимута в нулевых степенях. Все углы вертикального изменения сосредоточены вокруг опорного направления. Пять углов вертикального изменения лежат в диапазоне от-20 до +20 градусов. Установите желаемую частоту на 1 ГГц.
ang = [0,0,0,0,0; -20,-10,0,10,20]; freq = 1000;
Вычислите направленность вдоль постоянного сокращения азимута.
d = directivity(myMic,freq,ang)
d = 5×1
0
0
0
0
0
Для ненаправленного микрофона направленность независима от направления.
Направленность описывает направленность диаграммы направленности элемента датчика или массива элементов датчика.
Более высокая направленность желаема, когда это необходимо, чтобы передать больше излучения в определенном направлении. Направленность является отношением переданной излучающей интенсивности в заданном направлении к излучающей интенсивности, переданной изотропным теплоотводом с той же общей переданной степенью
где U rad(θ,φ) является излучающей интенсивностью передатчика в направлении, общее количество (θ,φ) и P является общей степенью, переданной изотропным теплоотводом. Для элемента получения или массива, направленность измеряет чувствительность к излучению, прибывающему от определенного направления. Принцип взаимности показывает, что направленность элемента или массива, используемого в приеме, равняется направленности того же элемента или массива, используемого в передаче. Когда преобразовано в децибелы, направленность обозначается как dBi. Для получения информации о направленности считайте примечания по Направленности Направленности и Массива Элемента.
Вычислительная направленность требует, чтобы интеграция далекого поля передала излучающую интенсивность по всем направлениям на пробеле, чтобы получить общую переданную степень. Существует различие между тем, как то интегрирование выполняется, когда антенны Antenna Toolbox™ используются в поэтапном массиве и когда антенны Phased Array System Toolbox™ используются. Когда массив содержит антенны Antenna Toolbox, расчет направленности выполняется с помощью треугольной mesh, созданной из 500 расположенных с равными интервалами точек по сфере. Для антенн Phased Array System Toolbox интегрирование использует универсальную прямоугольную сетку точек, расположенных с интервалами на расстоянии в 1 ° в азимуте и вертикальном изменении по сфере. Могут быть существенные различия в вычисленной направленности, специально для больших массивов.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.