HalfNormalDistribution

Объект полунормального распределения вероятностей

Описание

HalfNormalDistribution объект состоит из параметров, описания модели и выборочных данных для полунормального распределения вероятностей.

Полунормальное распределение является особым случаем свернутого нормального и усеченного нормального распределения. Приложения полунормального распределения включают данные об измерении моделирования и пожизненные данные.

Полунормальное распределение использует следующие параметры:

ПараметрОписаниеПоддержка
muМестоположение <μ<
sigmaШкалаσ0

Для получения дополнительной информации о полунормальном распределении, смотрите Полунормальное распределение.

Создание

Существует несколько способов создать HalfNormalDistribution объект вероятностного распределения.

  • Создайте распределение с заданными значениями параметров с помощью makedist.

  • Соответствуйте распределению к данным с помощью fitdist.

  • В интерактивном режиме соответствуйте распределению к данным с помощью приложения Distribution Fitter.

Свойства

развернуть все

Параметры распределения

Параметр положения полунормального распределения в виде скалярного значения. mu параметр является также нижним пределом полунормального распределения.

Реализация Statistics and Machine Learning Toolbox™ полунормального распределения принимает фиксированное значение для параметра положения μ. Можно задать значение для параметра μ при создании HalfNormalDistribution объект.

Типы данных: single | double

Масштабный коэффициент полунормального распределения в виде неотрицательного скалярного значения.

Типы данных: single | double

Характеристики распределения

Это свойство доступно только для чтения.

Логический флаг для усеченного распределения в виде логического значения. Если IsTruncated равняется 0, распределение не является усеченным. Если IsTruncated равняется 1, распределение является усеченным.

Типы данных: логический

Это свойство доступно только для чтения.

Количество параметров для вероятностного распределения в виде положительного целочисленного значения.

Типы данных: double

Это свойство доступно только для чтения.

Ковариационная матрица параметра оценивает в виде p-by-p матрицу, где p является количеством параметров в распределении. (iJ) элементом является ковариация между оценками iпараметр th и jпараметр th. (ii) элементом является предполагаемое отклонение iпараметр th. Если параметр i фиксируется, а не оценивается путем подбора кривой распределению к данным, затем (ii) элементы ковариационной матрицы 0.

Типы данных: double

Это свойство доступно только для чтения.

Логический флаг для фиксированных параметров в виде массива логических значений. Если 0, соответствующий параметр в ParameterNames массив не фиксируется. Если 1, соответствующий параметр в ParameterNames массив фиксируется.

Типы данных: логический

Это свойство доступно только для чтения.

Значения параметра распределения в виде вектора.

Типы данных: single | double

Это свойство доступно только для чтения.

Интервал усечения для вероятностного распределения в виде вектора, содержащего более низкие и верхние контуры усечения.

Типы данных: single | double

Другие свойства объектов

Это свойство доступно только для чтения.

Имя вероятностного распределения в виде вектора символов.

Типы данных: char

Это свойство доступно только для чтения.

Данные, используемые в распределении, соответствующем в виде структуры, содержащей следующее:

  • data: Вектор данных используется в подборе кривой распределения.

  • cens: Цензурирование вектора, или пустой, если ни один.

  • freq: Вектор частоты, или пустой, если ни один.

Типы данных: struct

Это свойство доступно только для чтения.

Описания параметра распределения в виде массива ячеек из символьных векторов. Каждая ячейка содержит краткое описание одного параметра распределения.

Типы данных: char

Это свойство доступно только для чтения.

Параметр распределения называет в виде массива ячеек из символьных векторов.

Типы данных: char

Функции объекта

cdfКумулятивная функция распределения
icdfОбратная кумулятивная функция распределения
iqrМежквартильный размах
meanСреднее значение вероятностного распределения
medianМедиана вероятностного распределения
negloglikОтрицательная логарифмическая правдоподобность вероятностного распределения
paramciДоверительные интервалы для параметров вероятностного распределения
pdfФункция плотности вероятности
proflikПрофилируйте функцию правдоподобия для вероятностного распределения
randomСлучайные числа
stdСтандартное отклонение вероятностного распределения
truncateУсеченный объект вероятностного распределения
varОтклонение вероятностного распределения

Примеры

свернуть все

pd = makedist('HalfNormal')
pd = 
  HalfNormalDistribution

  Half Normal distribution
       mu = 0
    sigma = 1

Создайте объект полунормального распределения. Задайте mu равняйтесь 0 и sigma равняйтесь 1,5.

pd = makedist('HalfNormal','mu',0,'sigma',1.5)
pd = 
  HalfNormalDistribution

  Half Normal distribution
       mu =   0
    sigma = 1.5

Вычислите среднее и стандартное отклонение распределения.

m = mean(pd)
m = 1.1968
s = std(pd)
s = 0.9042

Сгенерируйте 100 случайных чисел от стандартного нормального распределения и вычислите их абсолютное значение.

rng default  % For reproducibility
x = abs(random(makedist('Normal'),100,1));

Соответствуйте объекту полунормального распределения к выборочным данным.

pd = fitdist(x,'HalfNormal')
pd = 
  HalfNormalDistribution

  Half Normal distribution
       mu =      0
    sigma = 1.1631   [1.02184, 1.35006]

Вычислите среднее значение подходящего полунормального распределения с помощью объекта вероятностного распределения.

m = mean(pd)
m = 0.9280

Вычислите среднее значение полунормального распределения путем замены подходящим mu и sigma значения параметров в формулу

mean=μ+σ2π.

mcalc = pd.mu + pd.sigma*(sqrt(2/pi))
mcalc = 0.9280

Ссылки

[1] Cooray, K. и M.M.A. Полное блаженство. “Обобщение Полунормального распределения с Приложениями к Пожизненным Данным”. Коммуникации в Статистике – Теория и Методы. Издание 37, Номер 9, 2008, стр 1323–1337.

[2] Пеуси, A. Вывод большой выборки для Общего Полунормального распределения. Коммуникации в Статистике – Теория и Методы. Издание 31, Номер 7, 2002, стр 1045–1054.

Введенный в R2016a