NakagamiDistribution

Объект вероятностного распределения Nakagami

Описание

NakagamiDistribution объект состоит из параметров, описания модели и выборочных данных для вероятностного распределения Nakagami.

Распределение Nakagami обычно используется в коммуникационной теории к рассеянным сигналам модели, которые достигают получателя с помощью разнообразных путей.

Распределение Nakagami использует следующие параметры.

ПараметрОписаниеПоддержка
muСформируйте параметрμ>0
omegaМасштабный коэффициентω>0

Создание

Существует несколько способов создать NakagamiDistribution объект вероятностного распределения.

  • Создайте распределение с заданными значениями параметров с помощью makedist.

  • Соответствуйте распределению к данным с помощью fitdist.

  • В интерактивном режиме соответствуйте распределению к данным с помощью приложения Distribution Fitter.

Свойства

развернуть все

Параметры распределения

Сформируйте параметр для распределения Nakagami в виде значения положительной скалярной величины.

Типы данных: single | double

Масштабный коэффициент для распределения Nakagami в виде значения положительной скалярной величины.

Типы данных: single | double

Характеристики распределения

Это свойство доступно только для чтения.

Логический флаг для усеченного распределения в виде логического значения. Если IsTruncated равняется 0, распределение не является усеченным. Если IsTruncated равняется 1, распределение является усеченным.

Типы данных: логический

Это свойство доступно только для чтения.

Количество параметров для вероятностного распределения в виде положительного целочисленного значения.

Типы данных: double

Это свойство доступно только для чтения.

Ковариационная матрица параметра оценивает в виде p-by-p матрицу, где p является количеством параметров в распределении. (iJ) элементом является ковариация между оценками iпараметр th и jпараметр th. (ii) элементом является предполагаемое отклонение iпараметр th. Если параметр i фиксируется, а не оценивается путем подбора кривой распределению к данным, затем (ii) элементы ковариационной матрицы 0.

Типы данных: double

Это свойство доступно только для чтения.

Логический флаг для фиксированных параметров в виде массива логических значений. Если 0, соответствующий параметр в ParameterNames массив не фиксируется. Если 1, соответствующий параметр в ParameterNames массив фиксируется.

Типы данных: логический

Это свойство доступно только для чтения.

Значения параметра распределения в виде вектора.

Типы данных: single | double

Это свойство доступно только для чтения.

Интервал усечения для вероятностного распределения в виде вектора, содержащего более низкие и верхние контуры усечения.

Типы данных: single | double

Другие свойства объектов

Это свойство доступно только для чтения.

Имя вероятностного распределения в виде вектора символов.

Типы данных: char

Это свойство доступно только для чтения.

Данные, используемые в распределении, соответствующем в виде структуры, содержащей следующее:

  • data: Вектор данных используется в подборе кривой распределения.

  • cens: Цензурирование вектора, или пустой, если ни один.

  • freq: Вектор частоты, или пустой, если ни один.

Типы данных: struct

Это свойство доступно только для чтения.

Описания параметра распределения в виде массива ячеек из символьных векторов. Каждая ячейка содержит краткое описание одного параметра распределения.

Типы данных: char

Это свойство доступно только для чтения.

Параметр распределения называет в виде массива ячеек из символьных векторов.

Типы данных: char

Функции объекта

cdfКумулятивная функция распределения
icdfОбратная кумулятивная функция распределения
iqrМежквартильный размах
meanСреднее значение вероятностного распределения
medianМедиана вероятностного распределения
negloglikОтрицательная логарифмическая правдоподобность вероятностного распределения
paramciДоверительные интервалы для параметров вероятностного распределения
pdfФункция плотности вероятности
proflikПрофилируйте функцию правдоподобия для вероятностного распределения
randomСлучайные числа
stdСтандартное отклонение вероятностного распределения
truncateУсеченный объект вероятностного распределения
varОтклонение вероятностного распределения

Примеры

свернуть все

Создайте объект распределения Nakagami с помощью значений параметров по умолчанию.

pd = makedist('Nakagami')
pd = 
  NakagamiDistribution

  Nakagami distribution
       mu = 1
    omega = 1

Создайте объект распределения Nakagami настройкой значений параметров.

pd = makedist('Nakagami','mu',5,'omega',2)
pd = 
  NakagamiDistribution

  Nakagami distribution
       mu = 5
    omega = 2

Вычислите среднее значение распределения.

m = mean(pd)
m = 1.3794

Введенный в R2013a

Для просмотра документации необходимо авторизоваться на сайте