Одноуровневый 1D дискретный вейвлет преобразовывает
[ возвращает одноуровневый дискретный вейвлет преобразовывает (DWT) векторного cA,cD] = dwt(x,wname)x использование вейвлета задано wname. Вейвлет должен быть распознан wavemngr. dwt возвращает содействующий вектор приближения cA и детализируйте содействующий вектор cD из DWT.
Если ваше приложение требует многоуровневого разложения вейвлета, рассмотрите использование wavedec.
При запуске с s сигнала длины N вычисляются два набора коэффициентов: коэффициенты приближения cA 1 и коэффициенты детали cD 1. Свертка к s с масштабирующимся фильтром LoD, сопровождаемый двухместной децимацией, дает к коэффициентам приближения. Точно так же применяющий операцию свертки s с вейвлетом фильтрует HiD, сопровождаемый двухместной децимацией, дает к коэффициентам детали.

где
— Примените операцию свертки с фильтром X
— Downsample (сохраняют даже индексированные элементы),
Длина каждого фильтра равна 2n. Если N = длина (s), сигналы, F и G имеют длину N + 2n −1 и коэффициенты cA 1 и cD 1, имеет пол длины.
Иметь дело с эффектами конца сигнала, следующими из основанного на свертке алгоритма, глобальная переменная, управляемая dwtmode задает вид дополнительного используемого режима сигнала. Возможные варианты включают дополняющее нуль и симметричное расширение, которое является режимом по умолчанию.
Для того же входа, dwt функционируйте и блок DWT в DSP System Toolbox™ не приводят к тем же результатам. Блок DWT спроектирован для реализации в реальном времени, в то время как программное обеспечение Wavelet Toolbox™ спроектировано для анализа, таким образом, продукты обрабатывают граничные условия и фильтруют состояния по-другому.
Сделать dwt функционируйте выходное соответствие блок DWT выход, установленный функциональное граничное условие к дополнению нуля путем ввода dwtmode('zpd') в командной строке MATLAB®. Чтобы совпадать с задержкой блока DWT, который реализуется с помощью КИХ-фильтров, добавляют, нули к входу dwt функция. Количество нулей, которые вы добавляете, должно быть равно половине длины фильтра.
[1] Daubechies, я. Десять лекций по вейвлетам. CBMS-NSF региональный ряд конференции в прикладной математике. Филадельфия, PA: общество промышленной и прикладной математики, 1992.
[2] Mallat, S. G. “Теория для Разложения Сигнала Мультиразрешения: Представление Вейвлета”. Транзакции IEEE согласно Анализу Шаблона и Искусственному интеллекту. Издание 11, Выпуск 7, июль 1989, стр 674–693.
[3] Мейер, Y. Вейвлеты и операторы. Переведенный Д. Х. Сэлинджером. Кембридж, Великобритания: Издательство Кембриджского университета, 1995.
dwtfilterbank | dwtmode | idwt | wavedec | waveinfo