idualtree

Q-сдвиг Кингсбери 1D обратный двойной древовидный комплексный вейвлет преобразовывает

Описание

xrec = idualtree(A,D) возвращает обратное 1D комплексное двойное древовидное преобразование коэффициентов приближения итогового уровня, A, и массив ячеек коэффициентов вейвлета, DA и D выходные параметры dualtree. Для реконструкции, idualtree использование два набора фильтров:

  • Ортогональный фильтр Q-сдвига длины 10

  • Почти симметричная биоортогональная пара фильтра с длинами 7 (масштабирующийся фильтр синтеза) и 5 (фильтр синтеза вейвлета)

пример

xrec = idualtree(___,Name,Value) задает аргументы пары "имя-значение" использования дополнительных опций. Например, 'LowpassGain',0.1 применяет усиление 0,1 к коэффициентам приближения итогового уровня.

Примеры

свернуть все

Загрузите сигнал и получите его двойное древовидное преобразование.

load noisdopp
[a,d] = dualtree(noisdopp);

Восстановите приближение с помощью всех кроме двух поддиапазонов вейвлета мельчайшей детали.

dgain = ones(numel(d),1);
dgain(1:2) = 0;
xrec = idualtree(a,d,'DetailGain',dgain);
plot(noisdopp)
hold on
plot(xrec,'LineWidth',2);
legend('Original','Reconstruction')

Входные параметры

свернуть все

Коэффициенты приближения итогового уровня в виде векторной или матрицы с действительным знаком с действительным знаком. Коэффициентами приближения является выход dualtree.

Типы данных: double | single

Коэффициенты приближения в виде массива ячеек. Коэффициентами вейвлета является выход dualtree.

Типы данных: double | single

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: 'LevelOneFilter','antonini','LowpassGain',0.5

Биоортогональный фильтр, чтобы использовать в синтезе первого уровня, заданном одним из значений, перечисленных здесь. Для совершенной реконструкции фильтры синтеза первого уровня должны совпадать с аналитическими фильтрами первого уровня, используемыми в dualtree.

  • 'legall' — Фильтр LeGall 5/3

  • 'nearsym13_19' — (13,19) - касаются почти ортогонального фильтра

  • 'nearsym5_7' — (5,7) - касаются почти ортогонального фильтра

  • 'antonini' — (9,7) - касаются фильтра Antonini

Ортогональный Гильбертов синтез Q-сдвига фильтрует парную длину, чтобы использовать в уровнях 2 и выше в виде одного из перечисленных значений. Для совершенной реконструкции длина фильтра должна совпадать с длиной фильтра, используемой в dualtree.

Содействующий поддиапазон вейвлета получает в виде вектора с действительным знаком длины L, где L является числом элементов в D. Элементы DetailGain вещественные числа в интервале [0, 1]. k th элемент DetailGain усиление (взвешивание), применился к k th поддиапазон вейвлета. По умолчанию, DetailGain вектор из единиц L.

Получите, чтобы примениться к приближению итогового уровня (lowpass, масштабировавшись) коэффициенты в виде вещественного числа в интервале [0, 1].

Ссылки

[1] Antonini, M., М. Барло, П. Мэтью и я. Daubechies. “Отобразите Кодирование Используя Преобразование Вейвлета”. Транзакции IEEE на Обработке изображений 1, № 2 (апрель 1992): 205–20. https://doi.org/10.1109/83.136597.

[2] Кингсбери, Ник. “Комплексные Вейвлеты для Анализа Инварианта Сдвига и Фильтрации Сигналов”. Примененный и Вычислительный Гармонический Анализ 10, № 3 (май 2001): 234–53. https://doi.org/10.1006/acha.2000.0343.

[3] Le Gall, D. и А. Тэбэйтабай. “Кодирование поддиапазона Цифровых изображений Используя Симметричные Короткие Фильтры Ядра и Методы Кодирования Арифметики”. В ICASSP-88., Международная конференция по вопросам Акустики, Речи и Обработки сигналов, 761–64. Нью-Йорк, Нью-Йорк, США: IEEE, 1988. https://doi.org/10.1109/ICASSP.1988.196696.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Введенный в R2020a

Для просмотра документации необходимо авторизоваться на сайте