optByBatesNI

Цена опции моделью Bates с помощью численного интегрирования

Описание

пример

Price = optByBatesNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq) вычисляет европейскую цену опции ванили моделью Bates, с помощью методов численного интегрирования.

пример

Price = optByBatesNI(___,Name,Value) добавляют дополнительные аргументы пары "имя-значение".

Примеры

свернуть все

optByBatesNI численное интегрирование использования, чтобы вычислить цены опции и затем построить поверхность цены опции.

Задайте переменные опции, и убавляет параметры модели

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Вычислите цену опции за одну забастовку

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield)
Call = 5.3484

Вычислите цены опции за вектор из забастовок

Strike введите может быть вектор.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield)
Call = 5×1

    7.5765
    6.4020
    5.3484
    4.4173
    3.6073

Вычислите цены опции за вектор из забастовок и вектор из дат тех же длин

Используйте Strike введите, чтобы задать забастовки. Кроме того, Maturity введите может быть вектор, но он должен совпадать с длиной Strike вектор, если ExpandOutput аргумент пары "имя-значение" не установлен в "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield) % Five values in vector output
Call = 5×1

    9.7516
   10.3931
   10.8865
   11.2990
   11.6491

Расширьте Выход для поверхности

Установите ExpandOutput аргумент пары "имя-значение" "true" расширять выход в NStrikes- NMaturities матрица. В этом случае это - квадратная матрица.

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true) % (5 x 5) matrix output
Call = 5×5

    9.7516   11.4387   12.8395   14.0588   15.1361
    8.6554   10.3931   11.8344   13.0890   14.1980
    7.6432    9.4149   10.8865   12.1693   13.3046
    6.7153    8.5035    9.9951   11.2990   12.4553
    5.8705    7.6581    9.1594   10.4771   11.6491

Вычислите цены опции за вектор из забастовок и вектор из дат различных длин

Когда ExpandOutput "true", NStrikes не должны совпадать с NMaturities (то есть, выход NStrikes- NMaturities матрица может быть прямоугольной).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true) % (5 x 6) matrix output
Call = 5×6

    7.5765    9.7516   11.4387   12.8395   14.0588   15.1361
    6.4020    8.6554   10.3931   11.8344   13.0890   14.1980
    5.3484    7.6432    9.4149   10.8865   12.1693   13.3046
    4.4173    6.7153    8.5035    9.9951   11.2990   12.4553
    3.6073    5.8705    7.6581    9.1594   10.4771   11.6491

Вычислите цены опции за вектор из забастовок и вектор из цен активов

Когда ExpandOutput "true", выходом может также быть NStrikes- NAssetPrices прямоугольная матрица путем принятия вектора из цен активов.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByBatesNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true) % (5 x 4) matrix output
Call = 5×4

    4.2033    6.6918    9.7516   13.2808
    3.5558    5.8111    8.6554   11.9993
    2.9906    5.0181    7.6432   10.7934
    2.5018    4.3096    6.7153    9.6651
    2.0825    3.6818    5.8705    8.6158

Постройте поверхность цены опции

Strike и Maturity входные параметры могут быть векторами. Установите ExpandOutput к "true" выводить поверхность как NStrikes- NMaturities матрица.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true);


[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);

Входные параметры

свернуть все

Постоянно составляемая безрисковая процентная ставка в виде скалярного десятичного значения.

Типы данных: double

Текущая цена базового актива в виде числового значения с помощью скаляра или NINST- 1 или NColumns- 1 вектор.

Для получения дополнительной информации о соответствующих размерностях для AssetPrice, смотрите аргумент пары "имя-значение" ExpandOutput.

Типы данных: double

Расчетный день опции в виде NINST- 1 или NColumns- 1 вектор с помощью последовательных чисел даты, векторов символов даты, массивов datetime или строковых массивов. Settle дата должна быть перед Maturity дата.

Для получения дополнительной информации о соответствующих размерностях для Settle, смотрите аргумент пары "имя-значение" ExpandOutput.

Типы данных: double | char | datetime | string

Дата погашения опции в виде NINST- 1 или NColumns- 1 вектор с помощью последовательных чисел даты, векторов символов даты, массивов datetime или строковых массивов.

Для получения дополнительной информации о соответствующих размерностях для Maturity, смотрите аргумент пары "имя-значение" ExpandOutput.

Типы данных: double | char | datetime | string

Определение опции в виде NINST- 1 или NColumns- 1 вектор с помощью массива ячеек из символьных векторов или строковых массивов со значениями 'call' или 'put'.

Для получения дополнительной информации о соответствующих размерностях для OptSpec, смотрите аргумент пары "имя-значение" ExpandOutput.

Типы данных: cell | string

Значение цены исполнения опциона опции в виде NINST- 1, NRows- 1, NRows- NColumns вектор из цен исполнения опциона.

Для получения дополнительной информации о соответствующих размерностях для Strike, смотрите аргумент пары "имя-значение" ExpandOutput.

Типы данных: double

Начальное отклонение актива подчиненного в виде скалярного числового значения.

Типы данных: double

Долгосрочное отклонение актива подчиненного в виде скалярного числового значения.

Типы данных: double

Средняя скорость версии для актива подчиненного в виде скалярного числового значения.

Типы данных: double

Энергозависимость отклонения актива подчиненного в виде скалярного числового значения.

Типы данных: double

Корреляция между процессами Вайнера для базового актива и его отклонения в виде скалярного числового значения.

Типы данных: double

Среднее значение случайного размера скачка процента (J) в виде скалярного десятичного значения, где log(1+J) нормально распределено со средним значением (log(1+MeanJ)-0.5*JumpVol^2) и стандартное отклонение JumpVol.

Типы данных: double

Стандартное отклонение log(1+J), где J случайный размер скачка процента в виде скалярного десятичного значения.

Типы данных: double

Ежегодная частота процесса скачка Пуассона в виде скалярного числового значения.

Типы данных: double

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: Price = optByBatesNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7)

Дневное количество инструмента в виде разделенной запятой пары, состоящей из 'Basis' и скаляр с помощью поддерживаемого значения:

  •  0 = фактический/фактический

  •  1 = 30/360 (СИА)

  •  2 = Фактический/360

  •  3 = Фактический/365

  •  4 = 30/360 (PSA)

  •  5 = 30/360 (ISDA)

  •  6 = 30/360 (европеец)

  •  7 = Фактический/365 (японский язык)

  •  8 = фактический/фактический (ICMA)

  •  9 = Фактический/360 (ICMA)

  •  10 = Фактический/365 (ICMA)

  •  11 = 30/360E (ICMA)

  •  12 = Фактический/365 (ISDA)

  •  13 = ШИНА/252

Для получения дополнительной информации смотрите Основание.

Типы данных: double

Постоянно составляемый базовый актив уступает в виде разделенной запятой пары, состоящей из 'DividendYield' и скалярное числовое значение.

Типы данных: double

Надбавка за риск энергозависимости в виде разделенной запятой пары, состоящей из 'VolRiskPremium' и скалярное числовое значение.

Типы данных: double

Отметьте указание "на Небольшую формулировку" Прерывания Хестона Albrecher и др. в виде разделенной запятой пары, состоящей из 'LittleTrap' и логическое:

  • true — Используйте Albrecher и др. формулировка.

  • false — Используйте исходное формирование Хестона.

Типы данных: логический

Допуск абсолютной погрешности к численному интегрированию в виде разделенной запятой пары, состоящей из 'AbsTol' и скалярное числовое значение.

Типы данных: double

Допуск относительной погрешности к численному интегрированию в виде разделенной запятой пары, состоящей из 'RelTol' и скалярное числовое значение.

Типы данных: double

Область значений численного интегрирования раньше аппроксимировала непрерывный интеграл по [0 Inf]В виде разделенной запятой пары, состоящей из 'IntegrationRange' и 1- 2 вектор, представляющий [LowerLimit UpperLimit].

Типы данных: double

Среда за вычислительные цены опции и чувствительность с помощью численного интегрирования моделей в виде разделенной запятой пары, состоящей из 'Framework' и скалярная строка или вектор символов со следующими значениями:

  • "heston1993" или 'heston1993' — Метод используется в Хестоне (1993)

  • "lewis2001" или 'lewis2001' — Метод используется в Льюисе (2001)

Типы данных: char | string

Отметьте, чтобы расширить выходные параметры в виде разделенной запятой пары, состоящей из 'ExpandOutput' и логическое:

  • true — Если true, выходными параметрами является NRows- NColumns матрицы. NRows количество борьбы за каждый столбец, и это определяется Strike входной параметр. Например, Strike может быть NRows- 1 вектор или NRows- NColumns матрица. NColumns определяется размерами AssetPrice, Settle, Maturity, и OptSpec, который должен все быть или скаляром или NColumns- 1 векторы.

  • false — Если false, выходными параметрами является NINST- 1 векторы. Кроме того, входные параметры Strike, AssetPrice, Settle, Maturity, и OptSpec должен все быть или скаляр или NINST- 1 векторы.

Типы данных: логический

Выходные аргументы

свернуть все

Цены опции, возвращенные как NINST- 1, или NRows- NColumns, В зависимости от ExpandOutput.

Больше о

свернуть все

Опция ванили

vanilla option является категорией опций, которая включает только самые стандартные компоненты.

Опция ванили имеет дату истечения срока и прямую цену исполнения опциона. Американские параметры стиля и европейские параметры стиля оба категоризированы как опции ванили.

Выплата для опции ванили следующие:

  • Для вызова: max(StK,0)

  • Для помещенного: max(KSt,0)

где:

St является ценой базового актива во время t.

K является ценой исполнения опциона.

Для получения дополнительной информации см. Опцию Ванили.

Убавляет стохастическую модель диффузии скачка энергозависимости

Модель Бэйтса (Бэйтс (1996)) является расширением модели Хестона, где в дополнение к стохастической энергозависимости параметры диффузии скачка, похожие на Мертон (1976), были также добавлены, чтобы смоделировать внезапные перемещения цен активов.

Стохастическое дифференциальное уравнение:

dSt=(rqλpμJ)Stdt+vtStdWt+JStdPtdvt=κ(θvt)dt+σvvtdWtE[dWtdWtv]=pdtprob (dPt=1)=λpdt

где

r является непрерывным безрисковым уровнем.

q является непрерывной дивидендной доходностью.

S t является ценой активов во время t.

v t является отклонением цен активов во время t.

J является случайным условным выражением размера скачка процента на появлении скачка, где ln(1+J) нормально распределено со средним значением ln(1+μJ)δ22 и стандартное отклонение δ, и (1+J) имеет логарифмически нормальное распределение:

1(1+J)δ2πexp{[ln(1+J)(ln(1+μJ)δ22]2δ22}

v 0 является начальным отклонением цены активов в t = 0 (v 0> 0).

θ является долгосрочным уровнем отклонения для (θ> 0).

κ является скоростью возвращения к среднему уровню для (κ> 0).

σ v является энергозависимостью отклонения для (σ v> 0).

p является корреляцией между процессами Вайнера W t и Wtv для (-1 ≤ p ≤ 1).

μ J является средним значением J для (μ J>-1).

δ является стандартным отклонением ln(1+J) для (δ ≥ 0).

λp ежегодная частота (интенсивность) Пуассоновского процесса P t для (λp ≥ 0).

Характеристическая функция fBatesj(ϕ) для j = 1 (средняя мера цен активов) и j =2 (нейтральная к риску мера):

fBates(ϕ)=exp(Cj+Djv0+iϕlnSt)exp(λpτ(1+μJ)mj+12[(1+μj)iϕeδ2(mjiϕ+(iϕ)22)1]λpτμJiϕ)mj={m1=12m2=12}Cj=(rq)iϕτ+κθσv2[(bjpσviϕ+dj)τ2ln(1gjedjτ1gj)]Dj=bjpσviϕ+djσv2(1edjτ1gjedjτ)gj=bjpσviϕ+djbjpσviϕdjdj=(bjpσviϕ)2σv2(2ujiϕϕ2)где для j=1,2:u1=12,u2=12,b1=κ+λVolRiskpσv,b2=κ+λVolRisk

где

ϕ является переменной характеристической функции.

ƛ VolRisk является надбавкой за риск энергозависимости.

τ является временем к зрелости для (τ = T - t).

i является модульным мнимым числом для (i 2 =-1).

Определения для C j и D j под “Небольшим Прерыванием Хестона” Albrecher и др. (2007):

Cj=(rq)iϕτ+κθσv2[(bjpσviϕdj)τ2ln(1εjedjτ1εj)]Dj=bjpσviϕdjσv2(1edjτ1εjedjτ)εj=bjpσviϕdjbjpσviϕ+dj

Метод численного интегрирования при Хестоне (1993) среда

Численное интегрирование используется, чтобы оценить непрерывный интеграл для обратного преобразования Фурье.

Метод численного интегрирования при Хестоне (1993) среда основан на следующих выражениях:

Call(K)=SteqτP1KerτP2Put(K)=Call(K)+KerτSteqτPj=12+1π0Re[eiϕln(K)fj(ϕ)iϕ]dϕ

где

r является непрерывным безрисковым уровнем.

q является непрерывной дивидендной доходностью.

S t является ценой активов во время t.

K является забастовкой.

τ время к зрелости (τ = T-t).

Call (K) является досрочной ценой в забастовке K.

Put (K) является помещенной ценой в забастовке K

i является модульным мнимым числом (i 2 =-1)

ϕ переменная характеристической функции.

f j (ϕ) является характеристической функцией для P j (j = 1,2).

P 1 является вероятностью S t> K под мерой цен активов для модели.

P 2 является вероятностью S t> K под нейтральной к риску мерой для модели.

Где j = 1,2 так, чтобы f 1 (ϕ) и f 2 (ϕ) был характеристическими функциями для вероятностей P 1 и P 2, соответственно.

Эта среда выбрана со значением по умолчанию “Heston1993” для Framework аргумент пары "имя-значение".

Метод численного интегрирования при Льюисе (2001) среда

Численное интегрирование используется, чтобы оценить непрерывный интеграл для обратного преобразования Фурье.

Метод численного интегрирования при Льюисе (2001) среда основан на следующих выражениях:

Call(k)=SteqτKeτtπ0Re[Kiuf2(ϕ=(ui2))1u2+14]duPut(K)=Call(K)=KeτtSteqτ

где

r является непрерывным безрисковым уровнем.

q является непрерывной дивидендной доходностью.

S t является ценой активов во время t.

K является забастовкой.

τ время к зрелости (τ = T-t).

Call (K) является досрочной ценой в забастовке K.

Put (K) является помещенной ценой в забастовке K

i является модульным мнимым числом (i 2 =-1)

ϕ переменная характеристической функции.

u является переменной характеристической функции для интегрирования, где ϕ=(ui2).

f 2 (ϕ) является характеристической функцией для P 2.

P 2 является вероятностью S t> K под нейтральной к риску мерой для модели.

Эта среда выбрана со значением “Lewis2001” для Framework аргумент пары "имя-значение".

Ссылки

[1] Убавляет, D. S. “Скачки и стохастическая энергозависимость: процессы обменного курса, неявные в опциях немецкой марки”. Анализ финансовых исследований. Vol 9. № 1. 1996.

[2] Хестон, S. L. “Решение закрытой формы для опций со стохастической энергозависимостью с приложениями к опциям связи и валюты”. Анализ финансовых исследований. Vol 6. № 2. 1993.

[3] Льюис, A. L. “Простая формула опции для общей диффузии скачка и других экспоненциальных процессов налога”. Предположите финансовые системы и OptionCity.net, 2001.

Введенный в R2018a
Для просмотра документации необходимо авторизоваться на сайте