Факторизация Холесского
задает который треугольный множитель R = chol(A,triangle)A использовать в вычислении факторизации. Например, если triangle 'lower'то chol использование только диагональный и нижний треугольный фрагмент A произвести нижний треугольный матричный R это удовлетворяет A = R*R'. Значение по умолчанию triangle 'upper'.
[ также возвращает выход R,flag] = chol(___)flag указание, ли A симметричен положительный определенный. Можно использовать любую из комбинаций входных аргументов в предыдущих синтаксисах. Когда вы задаете flag вывод , chol не генерирует ошибку, если входная матрица не симметрична положительный определенный.
Если flag = 0 затем входная матрица симметрична положительный определенный, и факторизация была успешна.
Если flag не нуль, затем входная матрица не симметрична положительный определенный и flag целое число, указывающее на индекс положения центра, где факторизация перестала работать.
[ задает, возвратить ли информацию о сочетании R,flag,P] = chol(___,outputForm)P как матрица или вектор, с помощью любой из комбинаций входных аргументов в предыдущих синтаксисах. Эта опция только доступна для входных параметров разреженной матрицы. Например, если outputForm isvector и flag = 0, затем S(p,p) = R'*R. Значение по умолчанию outputForm ismatrix таким образом, что R'*R = P'*S*P.
Использование chol (вместо eig) эффективно определить, является ли матрица симметричной положительный определенный. Смотрите Определяют, Является ли Матрица Симметричной Положительный Определенный для получения дополнительной информации.