Нелинейная регрессия

Что такое Нелинейная Регрессия?

Цель моделей регрессии состоит в том, чтобы описать переменную отклика как функцию независимых переменных. Модели многофакторной линейной регрессии описывают ответ как линейную комбинацию коэффициентов и функции независимых переменных. Нелинейность может быть смоделирована с помощью нелинейных функций независимых переменных. Однако коэффициенты всегда вводят модель в линейный вид.

Нелинейные модели регрессии являются большим количеством механистических моделей нелинейных отношений между переменными отклика и независимыми переменными. Параметры могут ввести модель как экспоненциальную, тригонометрическую, степень или любая другая нелинейная функция. Неизвестные параметры в модели оцениваются путем минимизации статистического критерия, такого как отрицательная логарифмическая вероятность или сумма отклонений в квадрате между наблюдаемыми и ожидаемыми значениями.

В случае фармакокинетического (PK) учатся, данные об ответе обычно представляют некоторые измеренные концентрации препарата, и независимые переменные часто являются дозой и время. Нелинейная функция, часто используемая для таких данных, является показательной функцией, поскольку много наркотиков, однажды распределенных в пациенте, устраняются экспоненциальным способом. Один параметр PK, чтобы оценить в этом случае является уровнем, на котором препарат устраняется из тела, учитывая данные концентрация-время.

Например, считайте данные о концентрации плазмы препарата от одного индивидуума после внутривенной дозы шарика измеренными в различных моментах времени с некоторыми ошибками. Примите, что измеренная концентрация препарата следует за моноэкспоненциальным снижением: Ct=C0eket+aε.

Эта модель описывает ход времени концентрации препарата в теле (Ct), как функция концентрации препарата после внутривенной дозы шарика в t = 0 (C0), время (t) и параметр уровня устранения (ke). ε является средним нулем и переменной модульного отклонения, то есть, εN(0,1) представление погрешности измерения и a является ошибочным параметром модели (здесь, стандартное отклонение).

Более в общем можно записать модель как yj=f(xj;p)+g(εj), где yj является j th ответ интереса (такого как Ct), f является функцией известных количеств x (таких как C0 и время t), параметры модели p (такие как ke), и ошибочная модель g(εj).

Если существует несколько наблюдений относительно нескольких индивидуумов, модель становится yij=f(xij;pj)+g(εij) где yij является j th наблюдение за i th индивидуум. Кроме того, можно категоризировать данные в различные группы на основе различных категорий, таких как пол, возраст или высота.

Приспосабливание опций в SimBiology

Эта таблица суммирует нелинейные опции регрессии, доступные в SimBiology®.

Подбор кривой опцииПример
Отдельно-специфичная оценка параметра (Необъединенный подбор кривой)

Соответствуйте каждому индивидууму отдельно, приводя к одному набору оценок параметра для каждого индивидуума.

Категория - или специфичная для группы оценка параметра

Соответствуйте каждой категории или группе отдельно, приводя к одному набору оценок параметра для каждой категории.

Оценка параметра всего населения (Объединенный подбор кривой)

Соответствуйте всем данным, объединенным вместе, приводя ко всего одному набору оценок параметра.

Кроме того, SimBiology поддерживает четыре вида ошибочных моделей для измеренных или наблюдаемых ответов, а именно, постоянный (значение по умолчанию), пропорциональное, объединенное, и экспоненциал. Для получения дополнительной информации см. Ошибочные Модели. В зависимости от метода оптимизации можно задать ошибочную модель для каждого ответа или всех ответов. Для получения дополнительной информации см. Поддерживаемые Методы для Оценки Параметра SimBiology.

Оценка наибольшего правдоподобия

SimBiology оценивает параметры методом наибольшего правдоподобия. Вместо того, чтобы непосредственно максимизировать функцию правдоподобия, SimBiology создает эквивалентную проблему минимизации. Каждый раз, когда возможно, оценка формулируется как оптимизация метода взвешенных наименьших квадратов (WLS), которая минимизирует сумму квадратов взвешенных остаточных значений. В противном случае оценка формулируется как минимизация отрицания логарифма вероятности (NLL). Формулировка WLS часто сходится лучше, чем формулировка NLL, и SimBiology может использовать в своих интересах специализированные алгоритмы WLS, такие как алгоритм Levenberg-Marquardt, реализованный в lsqnonlin и lsqcurvefit. SimBiology использует WLS, когда существует одна ошибочная модель, которая является постоянной, пропорциональной, или экспоненциальной. SimBiology использует NLL, если у вас есть объединенная ошибочная модель или модель нескольких-ошибок, то есть, модель, имеющая ошибочную модель для каждого ответа.

sbiofit поддерживает различные методы оптимизации и передает в сформулированном WLS или выражении NLL к методу оптимизации, который минимизирует его.

 Выражение, которое минимизируется
Метод взвешенных наименьших квадратов (WLS)Для постоянной ошибочной модели, iN(yifi)2
Для пропорциональной ошибочной модели, iN(yifi)2fi2/fgm2
Для экспоненциальной ошибочной модели, iN(lnyilnfi)2
Для числовых весов, iN(yifi)2wgm/wi
Отрицательная логарифмическая правдоподобность (NLL)Для объединенной ошибочной модели и модели нескольких-ошибок, iN(yifi)22σi2+iNln2πσi2

Переменные определяются следующим образом.

NКоличество экспериментальных наблюдений
yiith экспериментальное наблюдение
fiОжидаемое значение ith наблюдения
σiСтандартное отклонение ith наблюдения.
  • Для постоянной ошибочной модели, σi=a

  • Для пропорциональной ошибочной модели, σi=b|fi|

  • Для объединенной ошибочной модели, σi=a+b|fi|

fgmfgm=(iN|fi|)1N
wiВес ith ожидаемого значения
wgmwgm=(iNwi)1N

Когда вы используете числовые веса или функцию веса, веса приняты, чтобы быть обратно пропорциональными отклонению ошибки, i.e., σi2=a2wi где a является постоянным параметром ошибок. Если вы используете веса, вы не можете задать ошибочную модель кроме постоянной ошибочной модели.

Различные методы оптимизации имеют различные требования к функции, которая минимизируется. Для некоторых методов оценка параметров модели выполняется независимо от оценки ошибочных параметров модели. Следующая таблица обобщает ошибочные модели и любые отдельные формулы, используемые для оценки ошибочных параметров модели, где a и b являются ошибочными параметрами модели, и e является стандартным средним нулем и переменной (Gaussian) модульного отклонения.

Ошибочная модельФункция оценки параметра ошибок
'constant': yi=fi+aea2=1NiN(yifi)2
'exponential': yi=fiexp(ae)a2=1NiN(lnyilnfi)2
'proportional': yi=fi+b|fi|eb2=1NiN(yififi)2
'combined': yi=fi+(a+b|fi|)eПараметры ошибок включены в минимизацию.
Весаa2=1NiN(yifi)2wi

Примечание

nlinfit только поддержите одну ошибочные модели, не модели нескольких-ошибок, то есть, специфичные для ответа ошибочные модели. Для объединенной ошибочной модели это использует итеративный алгоритм WLS. Для других ошибочных моделей это использует алгоритм WLS, аналогичный описанному ранее. Для получения дополнительной информации смотрите nlinfit (Statistics and Machine Learning Toolbox).

Подбор кривой Рабочему процессу для sbiofit

Следующие шаги показывают один из рабочих процессов, которые можно использовать в командной строке, чтобы подбирать модель PK.

  1. Импортируйте данные.

  2. Преобразуйте данные в groupedData формат.

  3. Задайте данные о дозировании. Для получения дополнительной информации смотрите Дозы в Моделях SimBiology.

  4. Создайте структурную модель (одна - 2D, или модель мультиотсека). Для получения дополнительной информации смотрите, Создают Фармакокинетические Модели.

  5. Сопоставьте переменную отклика от данных до компонента модели. Например, если вы имеете измеренные данные о концентрации препарата для центрального отсека, затем сопоставляете его с разновидностями препарата в центральном отсеке (обычно Drug_Central разновидности).

  6. Задайте параметры, чтобы оценить использование EstimatedInfo object. Опционально, можно задать преобразования параметра, начальные значения и границы параметра.

  7. Выполните использование оценки параметра sbiofit.

Для проиллюстрированных примеров смотрите следующее.

Смотрите также

| | |

Похожие темы

Для просмотра документации необходимо авторизоваться на сайте