Ребро классификации перезамены для наивного классификатора Байеса
возвращает Ребро Классификации перезамены (e = resubEdge(Mdl)e) для наивного классификатора Байеса Mdl использование обучающих данных сохранено в Mdl.X и соответствующие метки класса сохранены в Mdl.Y.
Ребро классификации является скалярным значением, которое представляет взвешенное среднее Полей Классификации.
Оцените ребро перезамены (среднее поле классификации в выборке) наивного классификатора Байеса.
Загрузите fisheriris набор данных. Создайте X как числовая матрица, которая содержит четыре лепестковых измерения для 150 ирисовых диафрагм. Создайте Y как массив ячеек из символьных векторов, который содержит соответствующие ирисовые разновидности.
load fisheriris X = meas; Y = species; rng('default') % for reproducibility
Обучите наивный классификатор Байеса с помощью предикторов X и класс маркирует Y. Методические рекомендации должны задать имена классов. fitcnb принимает, что каждый предиктор условно и нормально распределен.
Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'})
Mdl =
ClassificationNaiveBayes
ResponseName: 'Y'
CategoricalPredictors: []
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
NumObservations: 150
DistributionNames: {'normal' 'normal' 'normal' 'normal'}
DistributionParameters: {3x4 cell}
Properties, Methods
Mdl обученный ClassificationNaiveBayes классификатор.
Оцените ребро перезамены.
e = resubEdge(Mdl)
e = 0.8944
Средним значением полей обучающей выборки является приблизительно 0.89. Этот результат показывает, что классификатор помечает наблюдения в выборке высоким доверием.
Ребро классификатора измеряет среднее значение полей классификатора. Один способ выполнить выбор признаков состоит в том, чтобы сравнить ребра обучающей выборки от многоуровневых моделей. Базирующийся только на этом критерии, классификатор с самым высоким ребром является лучшим классификатором.
Загрузите ionosphere набор данных. Удалите первые два предиктора для устойчивости.
load ionosphere
X = X(:,3:end);Задайте эти два набора данных:
fullX содержит все предикторы.
partX содержит 10 самых важных предикторов.
fullX = X; idx = fscmrmr(X,Y); partX = X(:,idx(1:10));
Обучите наивный классификатор Байеса каждому набору предиктора.
FullMdl = fitcnb(fullX,Y); PartMdl = fitcnb(partX,Y);
FullMdl и PartMdl обученный ClassificationNaiveBayes классификаторы.
Оцените ребро обучающей выборки для каждого классификатора.
fullEdge = resubEdge(FullMdl)
fullEdge = 0.6554
partEdge = resubEdge(PartMdl)
partEdge = 0.7796
Ребро классификатора, обученного на 10 самых важных предикторах, больше. Этот результат предполагает, что классификатор обучил использование, только те предикторы имеют лучшую подгонку в выборке.
Mdl — Полный, обученный наивный классификатор БайесаClassificationNaiveBayes модельПолный, обученный наивный классификатор Байеса в виде ClassificationNaiveBayes модель, обученная fitcnb.
classification edge является взвешенным средним полей классификации.
Если вы предоставляете веса, то программное обеспечение нормирует их, чтобы суммировать к априорной вероятности их соответствующего класса. Программное обеспечение использует нормированные веса, чтобы вычислить взвешенное среднее.
При желании среди нескольких классификаторов выполнить задачу, такую как раздел функции, выберите классификатор, который дает к самому высокому ребру.
classification margin для каждого наблюдения является различием между счетом к истинному классу и максимальным счетом к ложным классам. Поля обеспечивают меру по доверию классификации; среди нескольких классификаторов те, которые дают к большим полям (по той же шкале) лучше.
posterior probability является вероятностью, что наблюдение принадлежит конкретного класса, учитывая данные.
Для наивного Бейеса апостериорная вероятность, что классификацией является k для заданного наблюдения (x 1..., xP)
где:
условная объединенная плотность предикторов, учитывая, они находятся в классе k. Mdl.DistributionNames хранит имена распределения предикторов.
π (Y = k) является распределением априорной вероятности класса. Mdl.Prior хранит предшествующее распределение.
объединенная плотность предикторов. Классы дискретны, таким образом,
prior probability класса является принятой относительной частотой, с которой наблюдения от того класса происходят в населении.
Наивный Байесов score является апостериорной вероятностью класса, учитывая наблюдение.
ClassificationNaiveBayes | CompactClassificationNaiveBayes | edge | fitcnb | loss | margin | predict | resubEdge | resubLoss | resubLoss | resubMargin
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.