Если Deep Learning Toolbox™ не обеспечивает слой, вы требуете для своей задачи, то можно задать собственный слой с помощью этого примера в качестве руководства. Для списка встроенных слоев смотрите Список слоев глубокого обучения.
Чтобы задать пользовательский слой глубокого обучения, можно использовать шаблон, обеспеченный в этом примере, который берет вас через следующие шаги:
Назовите слой – Дают слою имя так, чтобы можно было использовать его в MATLAB®.
Объявите, что свойства слоя – Задают свойства слоя и какие параметры изучены во время обучения.
Создайте (дополнительную) функцию конструктора – Задают, как создать слой и инициализировать его свойства. Если вы не задаете функцию конструктора, то при создании, программное обеспечение инициализирует Name
Описание
, и Type
свойства с []
и определяет номер вводов и выводов слоя к 1.
Создайте прямые функции – Задают, как данные передают вперед через слой (прямое распространение) во время предсказания и в учебное время.
Создайте обратную (дополнительную) функцию – Задают производные потери относительно входных данных и настраиваемых параметров (обратное распространение). Если вы не задаете обратную функцию, то прямые функции должны поддержать dlarray
объекты.
Определение обратной функции является дополнительным, когда прямые функции поддерживают dlarray
объекты, как введено. Используя dlarray
объекты делают работу с высокими размерными данными легче, позволяя вам пометить размерности. Например, можно пометить, которому размерности соответствуют пространственный, время, канал, и обрабатывают размерности в пакетном режиме с помощью 'S'
T
C
, и 'B'
метки, соответственно. Для незаданных и других размерностей используйте 'U'
метка. Для dlarray
возразите функциям, которые действуют по конкретным размерностям, можно задать метки размерности путем форматирования dlarray
возразите непосредственно, или при помощи 'DataFormat'
опция.
Используя отформатированный dlarray
объекты в пользовательских слоях также позволяют вам задавать слои, где вводы и выводы имеют различные форматы, такие как слои, которые переставляют, добавляют или удаляют размерности. Например, можно задать слой, который берет в качестве входа мини-пакет изображений с форматом 'SSCB'
(пространственный, пространственный, канал, пакет) и выход мини-пакет последовательностей с форматом 'CBT'
(образуйте канал, обработайте в пакетном режиме, время).
Включить поддержку использования отформатированного dlarray
объекты в пользовательском слое прямые функции, также наследуйтесь nnet.layer.Formattable
класс при определении пользовательского слоя.
В этом примере показано, как создать проект и изменить слой, который является слоем, обычно используемым в порождающих соперничающих сетях (GANs), который берет массив шума с форматом 'CB'
(образуйте канал, пакет), и проекты и изменяют его к мини-пакету изображений с форматом 'SSCB'
(пространственный, пространственный, канал, пакет) использующий полностью соединенный, изменяются и повторно помечают операции.
Для примера, показывающего, как обучить GAN с проектом и изменить слой, смотрите, Обучают Порождающую соперничающую сеть (GAN).
Скопируйте слой с шаблоном настраиваемых параметров в новый файл в MATLAB. Этот шаблон обрисовывает в общих чертах структуру слоя с настраиваемыми параметрами и включает функции, которые задают поведение слоя.
classdef myLayer < nnet.layer.Layer % & nnet.layer.Formattable (Optional) properties % (Optional) Layer properties. % Layer properties go here. end properties (Learnable) % (Optional) Layer learnable parameters. % Layer learnable parameters go here. end methods function layer = myLayer() % (Optional) Create a myLayer. % This function must have the same name as the class. % Layer constructor function goes here. end function [Z1, …, Zm] = predict(layer, X1, …, Xn) % Forward input data through the layer at prediction time and % output the result. % % Inputs: % layer - Layer to forward propagate through % X1, ..., Xn - Input data % Outputs: % Z1, ..., Zm - Outputs of layer forward function % Layer forward function for prediction goes here. end function [Z1, …, Zm, memory] = forward(layer, X1, …, Xn) % (Optional) Forward input data through the layer at training % time and output the result and a memory value. % % Inputs: % layer - Layer to forward propagate through % X1, ..., Xn - Input data % Outputs: % Z1, ..., Zm - Outputs of layer forward function % memory - Memory value for custom backward propagation % Layer forward function for training goes here. end function [dLdX1, …, dLdXn, dLdW1, …, dLdWk] = ... backward(layer, X1, …, Xn, Z1, …, Zm, dLdZ1, …, dLdZm, memory) % (Optional) Backward propagate the derivative of the loss % function through the layer. % % Inputs: % layer - Layer to backward propagate through % X1, ..., Xn - Input data % Z1, ..., Zm - Outputs of layer forward function % dLdZ1, ..., dLdZm - Gradients propagated from the next layers % memory - Memory value from forward function % Outputs: % dLdX1, ..., dLdXn - Derivatives of the loss with respect to the % inputs % dLdW1, ..., dLdWk - Derivatives of the loss with respect to each % learnable parameter % Layer backward function goes here. end end end
Во-первых, дайте слою имя. В первой линии файла класса замените существующее имя myLayer
с projectAndReshapeLayer
. Затем задайте, чтобы наследовать от обоих nnet.layer.Layer
и nnet.layer.Formattable
суперклассы.
classdef projectAndRehapeLayer < nnet.layer.Layer & nnet.layer.Formattable ... end
Затем переименуйте myLayer
функция конструктора (первая функция в methods
разделите) так, чтобы это имело то же имя как слой.
methods function layer = projectAndReshapeLayer() ... end ... end
Сохраните файл класса слоя в новом файле с именем projectAndReshapeLayer.m
. Имя файла должно совпадать с именем слоя. Чтобы использовать слой, необходимо сохранить файл в текущей папке или в папке на пути MATLAB.
Объявите свойства слоя в properties
разделите и объявите настраиваемые параметры путем листинга их в properties (Learnable)
раздел.
По умолчанию пользовательские промежуточные слои имеют эти свойства.
Свойство | Описание |
---|---|
Name | Имя слоя в виде вектора символов или строкового скаляра. Чтобы включать слой в график слоев, необходимо задать непустое, уникальное имя слоя. Если вы обучаете серийную сеть со слоем и Name установлен в '' , затем программное обеспечение автоматически присваивает имя к слою в учебное время. |
Description | Однострочное описание слоя в виде вектора символов или строкового скаляра. Это описание появляется, когда слой отображен в |
Type | Тип слоя в виде вектора символов или строкового скаляра. Значение Type появляется, когда слой отображен в Layer массив. Если вы не задаете тип слоя, то программное обеспечение отображает имя класса слоя. |
NumInputs | Количество входных параметров слоя в виде положительного целого числа. Если вы не задаете это значение, то программное обеспечение автоматически устанавливает NumInputs к количеству имен в InputNames . Значение по умолчанию равняется 1. |
InputNames | Введите имена слоя в виде массива ячеек из символьных векторов. Если вы не задаете это значение и NumInputs больше 1, затем программное обеспечение автоматически устанавливает InputNames к {'in1',...,'inN'} , где N равно NumInputs . Значением по умолчанию является {'in'} . |
NumOutputs | Количество выходных параметров слоя в виде положительного целого числа. Если вы не задаете это значение, то программное обеспечение автоматически устанавливает NumOutputs к количеству имен в OutputNames . Значение по умолчанию равняется 1. |
OutputNames | Выведите имена слоя в виде массива ячеек из символьных векторов. Если вы не задаете это значение и NumOutputs больше 1, затем программное обеспечение автоматически устанавливает OutputNames к {'out1',...,'outM'} , где M равно NumOutputs . Значением по умолчанию является {'out'} . |
Если слой не имеет никаких других свойств, то можно не использовать properties
раздел.
Совет
Если вы создаете слой с несколькими входными параметрами, то необходимо установить любого NumInputs
или InputNames
свойства в конструкторе слоя. Если вы создаете слой с несколькими выходными параметрами, то необходимо установить любого NumOutputs
или OutputNames
свойства в конструкторе слоя. Для примера смотрите, Задают Пользовательский Слой Глубокого обучения с Несколькими Входными параметрами.
Проект и изменяется, слой требует дополнительного свойства, которое содержит слой выходной размер. Задайте одно свойство с именем OutputSize
в properties
раздел.
properties
% Output size
OutputSize
end
Проект и изменяется, слой имеет два настраиваемых параметра: веса и смещения полностью операции connect. Объявите их настраиваемый параметр в properties (Learnable)
разделите и вызовите параметры Weights
и Bias
, соответственно.
properties (Learnable)
% Layer learnable parameters
% Fully connect weights Weights % Fully
connect biases Bias end
Создайте функцию, которая создает слой и инициализирует свойства слоя. Задайте любые переменные, требуемые создать слой как входные параметры к функции конструктора.
Проект и изменяется, функция конструктора слоя требует двух входных параметров:
Слой вывел размер
Количество каналов
Имя слоя (дополнительный, с именем по умолчанию ''
)
В функции конструктора projectAndReshapeLayer
, задайте два необходимых входных параметра под названием outputSize
и numChannels
, и дополнительные аргументы как пары "имя-значение" с именем NameValueArgs
. Добавьте комментарий в верхнюю часть функции, которая объясняет синтаксис функции.
function layer = projectAndReshapeLayer(outputSize,numChannels,NameValueArgs) % layer = projectAndReshapeLayer(outputSize,numChannels) % creates a projectAndReshapeLayer object that projects and % reshapes the input to the specified output size using and % specifies the number of input channels. % % layer = projectAndReshapeLayer(outputSize,numChannels,'Name',name) % also specifies the layer name. ... end
Проанализируйте входные параметры с помощью arguments
блок. Перечислите аргументы в том же порядке как синтаксис функций и задайте значения по умолчанию. Затем извлеките значения из NameValueArgs
входной параметр.
% Parse input arguments. arguments outputSize numChannels NameValueArgs.Name = '' end name = NameValueArgs.Name;
Инициализируйте свойства слоя, включая настраиваемые параметры в функции конструктора. Замените комментарий % Layer constructor function goes here
с кодом, который инициализирует свойства слоя.
Установите Name
свойство к входному параметру name
.
% Set layer name.
layer.Name = name;
Дайте слою однострочное описание путем установки Description
свойство слоя. Установите описание описывать тип слоя и его размера.
% Set layer description. layer.Description = "Project and reshape layer with output size " + join(string(outputSize));
Задайте тип слоя путем установки Type
свойство. Значение Type
появляется, когда слой отображен в Layer
массив.
% Set layer type. layer.Type = "Project and Reshape";
Установите свойство слоя OutputSize
к заданному входному значению.
% Set output size.
layer.OutputSize = outputSize;
Проект и изменяется, слой применяется полностью операция connect, чтобы спроектировать вход к пакету изображений. Инициализируйте веса с помощью инициализатора Glorot и инициализируйте смещение массивом нулей. Функции initializeGlorot
и initializeZeros
присоединены к примеру, Обучают Порождающую соперничающую сеть (GAN) как вспомогательные файлы. Чтобы получить доступ к этим функциям, откройте этот пример как live скрипт. Для получения дополнительной информации об инициализации настраиваемых параметров для операций глубокого обучения, смотрите, Инициализируют Настраиваемые параметры для Функции Модели.
% Initialize fully connect weights and bias.
sz = [prod(outputSize) numChannels];
numOut = prod(outputSize);
numIn = numChannels;
layer.Weights = initializeGlorot(sz,numOut,numIn);
layer.Bias = initializeZeros([prod(outputSize) 1]);
Просмотрите завершенную функцию конструктора.
function layer = projectAndReshapeLayer(outputSize,numChannels,NameValueArgs)
% layer = projectAndReshapeLayer(outputSize,numChannels)
% creates a projectAndReshapeLayer object that projects and
% reshapes the input to the specified output size using and
% specifies the number of input channels.
%
% layer = projectAndReshapeLayer(outputSize,numChannels,'Name',name)
% also specifies the layer name.
% Parse input arguments.
arguments
outputSize
numChannels
NameValueArgs.Name = '';
end
name = NameValueArgs.Name;
% Set layer name.
layer.Name = name;
% Set layer description.
layer.Description = "Project and reshape layer with output size " + join(string(outputSize));
% Set layer type.
layer.Type = "Project and Reshape";
% Set output size.
layer.OutputSize = outputSize;
% Initialize fully connect weights and bias.
sz = [prod(outputSize) numChannels];
numOut = prod(outputSize);
numIn = numChannels;
layer.Weights = initializeGlorot(sz,numOut,numIn);
layer.Bias = initializeZeros([prod(outputSize) 1]);
end
С этой функцией конструктора, команда projectAndReshapeLayer([4 4 512],100,'Name','proj');
создает проект, и измените слой с именем 'proj'
это проектирует входные массивы с размером 100 к пакету 512 изображений 4 на 4.
Создайте слой вперед функции, чтобы использовать во время предсказания и учебное время.
Создайте функцию с именем predict
это распространяет данные вперед через слой во время предсказания и выводит результат.
Синтаксис для predict
[Z1,…,Zm] = predict(layer,X1,…,Xn)
, где X1,…,Xn
n
входные параметры слоя и Z1,…,Zm
m
слой выходные параметры. Значения n
и m
должен соответствовать NumInputs
и NumOutputs
свойства слоя.
Совет
Если количество входных параметров к predict
может варьироваться, затем использовать varargin
вместо X1,…,Xn
. В этом случае, varargin
массив ячеек входных параметров, где varargin{i}
соответствует Xi
. Если количество выходных параметров может варьироваться, то используйте varargout
вместо Z1,…,Zm
. В этом случае, varargout
массив ячеек выходных параметров, где varargout{j}
соответствует Zj
.
Совет
Если пользовательский слой имеет dlnetwork
объект для настраиваемого параметра, затем в predict
функция пользовательского слоя, используйте predict
функция для dlnetwork
. Используя dlnetwork
объект predict
функция гарантирует, что программное обеспечение использует правильные операции слоя для предсказания.
Поскольку проект и изменяется, слой имеет только один вход и один выход, синтаксис для predict
для проекта и изменяются, слоем является Z = predict(layer,X)
.
По умолчанию слой использует predict
как прямая функция в учебное время. Использовать различную прямую функцию в учебное время или сохранить значение потребовали для пользовательской обратной функции, необходимо также создать функцию с именем forward
.
Размерности входных параметров зависят от типа данных и выхода связанных слоев:
Вход слоя | Введите размер | Размерность наблюдения |
---|---|---|
2D изображения | h-by-w-by-c-by-N, где h, w и c соответствуют высоте, ширине, и количеству каналов изображений, соответственно, и N, является количеством наблюдений. | 4 |
3-D изображения | h-by-w-by-d-by-c-by-N, где h, w, d и c соответствуют высоте, ширине, глубине, и количеству каналов 3-D изображений, соответственно, и N, является количеством наблюдений. | 5 |
Векторные последовательности | c-by-N-by-S, где c является количеством функций последовательностей, N, является количеством наблюдений, и S является длиной последовательности. | 2 |
2D последовательности изображений | h-by-w-by-c-by-N-by-S, где h, w и c соответствуют высоте, ширине и количеству каналов изображений, соответственно, N, является количеством наблюдений, и S является длиной последовательности. | 4 |
3-D последовательности изображений | h-by-w-by-d-by-c-by-N-by-S, где h, w, d и c соответствуют высоте, ширине, глубине и количеству каналов 3-D изображений, соответственно, N, является количеством наблюдений, и S является длиной последовательности. | 5 |
Для слоев, которые выводят последовательности, слои могут вывести последовательности любой длины или выходных данных без измерения времени. Обратите внимание на то, что при обучении сети, что выходные последовательности с помощью trainNetwork
функция, длины последовательностей ввода и вывода должны соответствовать.
Поскольку пользовательский слой наследовался nnet.layer.Formattable
класс, слой получает, отформатировал dlarray
объекты с метками, соответствующими выходу предыдущего слоя.
forward
функция распространяет данные вперед через слой в учебное время и также выводит значение памяти.
Синтаксис для forward
[Z1,…,Zm,memory] = forward(layer,X1,…,Xn)
, где X1,…,Xn
n
входные параметры слоя, Z1,…,Zm
m
слой выходные параметры и memory
память о слое.
Совет
Если количество входных параметров к forward
может варьироваться, затем использовать varargin
вместо X1,…,Xn
. В этом случае, varargin
массив ячеек входных параметров, где varargin{i}
соответствует Xi
. Если количество выходных параметров может варьироваться, то используйте varargout
вместо Z1,…,Zm
. В этом случае, varargout
массив ячеек выходных параметров, где varargout{j}
соответствует Zj
для j
= 1, …, NumOutputs
и varargout{NumOutputs + 1}
соответствует memory
.
Совет
Если пользовательский слой имеет dlnetwork
объект для настраиваемого параметра, затем в forward
функция пользовательского слоя, используйте forward
функция dlnetwork
объект. Используя dlnetwork
объект forward
функция гарантирует, что программное обеспечение использует правильные операции слоя для обучения.
Проект и изменяется, операция состоит из трех операции:
Применяйтесь полностью операции подключения с learnable весами и смещения.
Измените выход к заданному выходному размеру.
Повторно пометьте размерности так, чтобы выход имел формат 'SSCB'
(пространственный, пространственный, канал, пакет)
Реализуйте эту операцию в predict
функция. Проект и изменяется, слой не требует памяти или различной прямой функции для обучения, таким образом, можно удалить forward
функция из файла класса. Добавьте комментарий в верхнюю часть функции, которая объясняет синтаксисы функции.
function Z = predict(layer, X)
% Forward input data through the layer at prediction time and
% output the result.
%
% Inputs:
% layer - Layer to forward propagate through
% X - Input data, specified as a formatted dlarray
% with a 'C' and optionally a 'B' dimension.
% Outputs:
% Z - Output of layer forward function returned as
% a formatted dlarray with format 'SSCB'.
% Fully connect.
weights = layer.Weights;
bias = layer.Bias;
X = fullyconnect(X,weights,bias);
% Reshape.
outputSize = layer.OutputSize;
Z = reshape(X, outputSize(1), outputSize(2), outputSize(3), []);
% Relabel.
Z = dlarray(Z,'SSCB');
end
Совет
Если вы предварительно выделяете массивы с помощью функций такой как zeros
, затем необходимо гарантировать, что типы данных этих массивов сопоставимы с входными параметрами функции слоя. Чтобы создать массив нулей совпадающего типа данных как другой массив, используйте 'like'
опция zeros
. Например, чтобы инициализировать массив нулей размера sz
с совпадающим типом данных как массив X
, используйте Z = zeros(sz,'like',X)
.
Поскольку predict
функционируйте только использует функции та поддержка dlarray
объекты, задавая backward
функция является дополнительной. Для списка функций та поддержка dlarray
объекты, см. Список Функций с Поддержкой dlarray.
Просмотрите завершенный файл класса слоя.
classdef projectAndReshapeLayer < nnet.layer.Layer & nnet.layer.Formattable % Example project and reshape layer. properties % Output size OutputSize end properties (Learnable) % Layer learnable parameters % Fully connect weights Weights % Fully connect biases Bias end methods function layer = projectAndReshapeLayer(outputSize,numChannels,NameValueArgs) % layer = projectAndReshapeLayer(outputSize,numChannels) % creates a projectAndReshapeLayer object that projects and % reshapes the input to the specified output size using and % specifies the number of input channels. % % layer = projectAndReshapeLayer(outputSize,numChannels,'Name',name) % also specifies the layer name. % Parse input arguments. arguments outputSize numChannels NameValueArgs.Name = ''; end name = NameValueArgs.Name; % Set layer name. layer.Name = name; % Set layer description. layer.Description = "Project and reshape layer with output size " + join(string(outputSize)); % Set layer type. layer.Type = "Project and Reshape"; % Set output size. layer.OutputSize = outputSize; % Initialize fully connect weights and bias. sz = [prod(outputSize) numChannels]; numOut = prod(outputSize); numIn = numChannels; layer.Weights = initializeGlorot(sz,numOut,numIn); layer.Bias = initializeZeros([prod(outputSize) 1]); end function Z = predict(layer, X) % Forward input data through the layer at prediction time and % output the result. % % Inputs: % layer - Layer to forward propagate through % X - Input data, specified as a formatted dlarray % with a 'C' and optionally a 'B' dimension. % Outputs: % Z - Output of layer forward function returned as % a formatted dlarray with format 'SSCB'. % Fully connect. weights = layer.Weights; bias = layer.Bias; X = fullyconnect(X,weights,bias); % Reshape. outputSize = layer.OutputSize; Z = reshape(X, outputSize(1), outputSize(2), outputSize(3), []); % Relabel. Z = dlarray(Z,'SSCB'); end end end
Если слой вперед функции полностью поддерживает dlarray
объекты, затем слоем является совместимый графический процессор. В противном случае, чтобы быть совместимым графическим процессором, функции слоя должны поддержать входные параметры и возвратить выходные параметры типа gpuArray
(Parallel Computing Toolbox).
Много поддержки встроенных функций MATLAB gpuArray
(Parallel Computing Toolbox) и dlarray
входные параметры. Для списка функций та поддержка dlarray
объекты, см. Список Функций с Поддержкой dlarray. Для списка функций, которые выполняются на графическом процессоре, смотрите функции MATLAB Запуска на графическом процессоре (Parallel Computing Toolbox). Чтобы использовать графический процессор для глубокого обучения, у вас должно также быть поддерживаемое устройство графического процессора. Для получения информации о поддерживаемых устройствах смотрите Поддержку графического процессора Релизом (Parallel Computing Toolbox). Для получения дополнительной информации о работе с графическими процессорами в MATLAB смотрите, что графический процессор Вычисляет в MATLAB (Parallel Computing Toolbox).
В этом примере функции MATLAB используются в predict
вся поддержка dlarray
объекты, таким образом, слоем является совместимый графический процессор.
Задайте следующую архитектуру сети генератора для GAN, который генерирует изображения от 1 1 100 массивами случайных значений:
Эта сеть:
Преобразует случайные векторы из размера от 100 до 7 7 128 массивами с помощью проекта, и измените слой.
Увеличивает масштаб полученные массивы к 64 64 3 массивами с помощью серии транспонированных слоев свертки и слоев ReLU.
Задайте эту сетевую архитектуру как график слоев и задайте следующие сетевые свойства.
Для транспонированных слоев свертки задайте фильтры 5 на 5 с уменьшающимся количеством фильтров для каждого слоя, шага 2 и обрезки выхода на каждом ребре.
Поскольку финал транспонировал слой свертки, задайте три фильтра 5 на 5, соответствующие трем каналам RGB сгенерированных изображений и выходному размеру предыдущего слоя.
В конце сети включайте tanh слой.
Чтобы спроектировать и изменить шумовой вход, используйте пользовательский слой projectAndReshapeLayer.
filterSize = 5; numFilters = 64; numLatentInputs = 100; projectionSize = [4 4 512]; layersG = [ featureInputLayer(numLatentInputs,'Normalization','none','Name','in') projectAndReshapeLayer(projectionSize,numLatentInputs,'Name','proj'); transposedConv2dLayer(filterSize,4*numFilters,'Name','tconv1') reluLayer('Name','relu1') transposedConv2dLayer(filterSize,2*numFilters,'Stride',2,'Cropping','same','Name','tconv2') reluLayer('Name','relu2') transposedConv2dLayer(filterSize,numFilters,'Stride',2,'Cropping','same','Name','tconv3') reluLayer('Name','relu3') transposedConv2dLayer(filterSize,3,'Stride',2,'Cropping','same','Name','tconv4') tanhLayer('Name','tanh')]; lgraphG = layerGraph(layersG);
Чтобы обучить сеть с пользовательским учебным циклом и включить автоматическое дифференцирование, преобразуйте график слоев в dlnetwork
объект.
dlnetG = dlnetwork(lgraphG);