Цена опции и чувствительность моделью Merton76 с помощью численного интегрирования
добавляют дополнительные аргументы пары "имя-значение". PriceSens
= optSensByMertonNI(___,Name,Value
)
optSensByMertonNI
численное интегрирование использования, чтобы вычислить чувствительность опции и затем построить поверхности чувствительности опции.
Задайте переменные опции и параметры модели Merton76
AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';
Sigma = 0.16;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;
Вычислите чувствительность опции для одной забастовки
Settle = datenum('29-Jun-2017'); Maturity = datemnth(Settle, 6); Strike = 80; Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ... Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ... 'OutSpec', "delta")
Delta = 0.5283
Вычислите чувствительность опции для вектора из забастовок
Strike
введите может быть вектор.
Settle = datenum('29-Jun-2017'); Maturity = datemnth(Settle, 6); Strike = (76:2:84)'; Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ... Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ... 'OutSpec', "delta")
Delta = 5×1
0.6727
0.6013
0.5283
0.4565
0.3883
Вычислите чувствительность опции для вектора из забастовок и вектора из дат тех же длин
Используйте Strike
введите, чтобы задать забастовки. Кроме того, Maturity
введите может быть вектор, но он должен совпадать с длиной Strike
вектор, если ExpandOutput
аргумент пары "имя-значение" не установлен в "true"
.
Settle = datenum('29-Jun-2017'); Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities Strike = [76 78 80 82 84]'; % Five strikes Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ... Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ... 'OutSpec', "delta")
Delta = 5×1
0.6419
0.5907
0.5565
0.5311
0.5110
% Five values in vector output
Расширьте Выход для поверхности
Установите ExpandOutput
аргумент пары "имя-значение" "true"
расширять выход в NStrikes
- NMaturities
матрица. В этом случае это - квадратная матрица.
Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ... Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ... 'OutSpec', "delta", 'ExpandOutput', true) % (5 x 5) matrix output
Delta = 5×5
0.6419 0.6305 0.6245 0.6204 0.6173
0.5922 0.5907 0.5905 0.5905 0.5905
0.5422 0.5507 0.5565 0.5607 0.5637
0.4927 0.5112 0.5229 0.5311 0.5372
0.4447 0.4725 0.4898 0.5020 0.5110
Вычислите чувствительность опции для вектора из забастовок и вектора из дат различных длин
Когда ExpandOutput
"true"
, NStrikes
не должны совпадать с NMaturities
. Таким образом, выход NStrikes
- NMaturities
матрица может быть прямоугольной.
Settle = datenum('29-Jun-2017'); Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities Strike = (76:2:84)'; % Five strikes Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ... Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ... 'OutSpec', "delta", 'ExpandOutput', true) % (5 x 6) matrix output
Delta = 5×6
0.6727 0.6419 0.6305 0.6245 0.6204 0.6173
0.6013 0.5922 0.5907 0.5905 0.5905 0.5905
0.5283 0.5422 0.5507 0.5565 0.5607 0.5637
0.4565 0.4927 0.5112 0.5229 0.5311 0.5372
0.3883 0.4447 0.4725 0.4898 0.5020 0.5110
Вычислите чувствительность опции для вектора из забастовок и вектора из цен активов
Когда ExpandOutput
"true"
, выходом может также быть NStrikes
- NAssetPrices
прямоугольная матрица путем принятия вектора из цен активов.
Settle = datenum('29-Jun-2017'); Maturity = datemnth(Settle, 12); % Single maturity ManyAssetPrices = [70 75 80 85]; % Four asset prices Strike = (76:2:84)'; % Five strikes Delta = optSensByMertonNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ... Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ... 'OutSpec', "delta", 'ExpandOutput', true) % (5 x 4) matrix output
Delta = 5×4
0.3796 0.5157 0.6419 0.7472
0.3315 0.4637 0.5922 0.7043
0.2874 0.4137 0.5422 0.6592
0.2474 0.3664 0.4927 0.6128
0.2117 0.3224 0.4447 0.5657
Постройте поверхности чувствительности опции
Strike
и Maturity
входные параметры могут быть векторами. Установите ExpandOutput
к "true"
выводить поверхности как NStrikes
- NMaturities
матрицы.
Settle = datenum('29-Jun-2017'); Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]'); Times = yearfrac(Settle, Maturity); Strike = (2:2:200)'; [Delta, Gamma, Rho, Theta, Vega] = optSensByMertonNI(... Rate, AssetPrice,Settle, Maturity, OptSpec, Strike, ... Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ... 'OutSpec', ["delta", "gamma", "rho", "theta", "vega"], ... 'ExpandOutput', true); [X,Y] = meshgrid(Times,Strike); figure; surf(X,Y,Delta); title('Delta'); xlabel('Years to Option Expiry'); ylabel('Strike'); view(-112,34); xlim([0 Times(end)]);
figure; surf(X,Y,Gamma) title('Gamma') xlabel('Years to Option Expiry') ylabel('Strike') view(-112,34); xlim([0 Times(end)]);
figure; surf(X,Y,Rho) title('Rho') xlabel('Years to Option Expiry') ylabel('Strike') view(-112,34); xlim([0 Times(end)]);
figure; surf(X,Y,Theta) title('Theta') xlabel('Years to Option Expiry') ylabel('Strike') view(-112,34); xlim([0 Times(end)]);
figure; surf(X,Y,Vega) title('Vega') xlabel('Years to Option Expiry') ylabel('Strike') view(-112,34); xlim([0 Times(end)]);
Rate
— Постоянно составляемая безрисковая процентная ставкаПостоянно составляемая безрисковая процентная ставка в виде скалярного десятичного значения.
Типы данных: double
AssetPrice
— Текущая цена базового активаТекущая цена базового актива в виде числового значения с помощью скаляра или NINST
- 1
или NColumns
- 1
вектор.
Для получения дополнительной информации о соответствующих размерностях для AssetPrice
, смотрите аргумент пары "имя-значение" ExpandOutput
.
Типы данных: double
Settle
— Расчетный день опции Расчетный день опции в виде NINST
- 1
или NColumns
- 1
вектор с помощью последовательных чисел даты, векторов символов даты, массивов datetime или строковых массивов. Settle
дата должна быть перед Maturity
дата.
Для получения дополнительной информации о соответствующих размерностях для Settle
, смотрите аргумент пары "имя-значение" ExpandOutput
.
Типы данных: double |
char
| datetime
| string
Maturity
— Дата погашения опцииДата погашения опции в виде NINST
- 1
или NColumns
- 1
вектор с помощью последовательных чисел даты, векторов символов даты, массивов datetime или строковых массивов.
Для получения дополнительной информации о соответствующих размерностях для Maturity
, смотрите аргумент пары "имя-значение" ExpandOutput
.
Типы данных: double |
char
| datetime
| string
OptSpec
— Определение опции 'call'
или 'put'
| массив строк со значениями "call"
или "put"
Определение опции в виде NINST
- 1
или NColumns
- 1
вектор с помощью массива ячеек из символьных векторов или строковых массивов со значениями 'call'
или 'put'
.
Для получения дополнительной информации о соответствующих размерностях для OptSpec
, смотрите аргумент пары "имя-значение" ExpandOutput
.
Типы данных: cell
| string
Strike
— Значение цены исполнения опциона опцииЗначение цены исполнения опциона опции в виде NINST
- 1
, NRows
- 1
, NRows
- NColumns
вектор из цен исполнения опциона.
Для получения дополнительной информации о соответствующих размерностях для Strike
, смотрите аргумент пары "имя-значение" ExpandOutput
.
Типы данных: double
Sigma
— Энергозависимость базового активаЭнергозависимость актива подчиненного в виде скалярного числового значения.
Типы данных: double
MeanJ
— Среднее значение случайного размера скачка процентаСреднее значение случайного размера скачка процента (J) в виде скалярного десятичного значения, где log
(1+J) нормально распределено со средним значением (log
(1+MeanJ
)-0.5*JumpVol
^2) и стандартное отклонение JumpVol
.
Типы данных: double
JumpVol
— Стандартное отклонение log
(1+J)Стандартное отклонение log
(1+J), где J
случайный размер скачка процента в виде скалярного десятичного значения.
Типы данных: double
JumpFreq
— Ежегодная частота процесса скачка ПуассонаЕжегодная частота процесса скачка Пуассона в виде скалярного числового значения.
Типы данных: double
Задайте дополнительные разделенные запятой пары Name,Value
аргументы. Name
имя аргумента и Value
соответствующее значение. Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN
.
Price = optSensByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq,'Basis',7)
'Basis'
— Базис дневного количества инструмента
(значение по умолчанию) | числовые значения: 0
,1
, 2
, 3
, 4
, 6
, 7
, 8
, 9
, 10
, 11
, 12
, 13
Дневное количество инструмента в виде разделенной запятой пары, состоящей из 'Basis'
и скаляр с помощью поддерживаемого значения:
0 = фактический/фактический
1 = 30/360 (СИА)
2 = Фактический/360
3 = Фактический/365
4 = 30/360 (PSA)
5 = 30/360 (ISDA)
6 = 30/360 (европеец)
7 = Фактический/365 (японский язык)
8 = фактический/фактический (ICMA)
9 = Фактический/360 (ICMA)
10 = Фактический/365 (ICMA)
11 = 30/360E (ICMA)
12 = Фактический/365 (ISDA)
13 = ШИНА/252
Для получения дополнительной информации смотрите Базис.
Типы данных: double
'DividendYield'
— Постоянно составляемое выражение базового актива
(значение по умолчанию) | числовойПостоянно составляемый базовый актив уступает в виде разделенной запятой пары, состоящей из 'DividendYield'
и скалярное числовое значение.
Типы данных: double
'OutSpec'
— Задайте выходные параметры["price"]
(значение по умолчанию) | массив строк со значениями "price"
\delta
\Gamma
, "vega"
\rho
, и "theta"
| массив ячеек из символьных векторов со значениями 'price'
\delta
\Gamma
, 'vega'
\rho
, и 'theta'
Задайте выходные параметры в виде разделенной запятой пары, состоящей из 'OutSpec'
и NOUT
- 1
или 1
- NOUT
массив строк или массив ячеек из символьных векторов с поддерживаемыми значениями.
Примечание
"vega"
чувствительность с уважением начальная энергозависимость sqrt (V0
).
Пример: OutSpec = ["price","delta","gamma","vega","rho","theta"]
Типы данных: string
| cell
'AbsTol'
— Допуск абсолютной погрешности к численному интегрированию1e-10
(значение по умолчанию) | числовойДопуск абсолютной погрешности к численному интегрированию в виде разделенной запятой пары, состоящей из 'AbsTol'
и скалярное числовое значение.
Типы данных: double
'RelTol'
— Допуск относительной погрешности к численному интегрированию1e-6
(значение по умолчанию) | числовойДопуск относительной погрешности к численному интегрированию в виде разделенной запятой пары, состоящей из 'RelTol'
и скалярное числовое значение.
Типы данных: double
'IntegrationRange'
— Область значений численного интегрирования раньше аппроксимировала непрерывный интеграл по [0 Inf]
[1e-9 Inf]
(значение по умолчанию) | векторОбласть значений численного интегрирования раньше аппроксимировала непрерывный интеграл по [0 Inf]
В виде разделенной запятой пары, состоящей из 'IntegrationRange'
и 1
- 2
вектор, представляющий [LowerLimit UpperLimit]
.
Типы данных: double
'Framework'
— Среда за вычислительные цены опции и чувствительность с помощью численного интегрирования моделей"heston1993"
(значение по умолчанию) | представляет в виде строки со значениями "heston1993"
или "lewis2001"
| вектор символов со значениями 'heston1993'
или 'lewis2001'
Среда за вычислительные цены опции и чувствительность с помощью численного интегрирования моделей в виде разделенной запятой пары, состоящей из 'Framework'
и скалярная строка или вектор символов со следующими значениями:
"heston1993"
или 'heston1993'
— Метод используется в Хестоне (1993)
"lewis2001"
или 'lewis2001'
— Метод используется в Льюисе (2001)
Типы данных: char |
string
'ExpandOutput'
— Отметьте, чтобы расширить выходные параметрыfalse
(выходными параметрами является NINST
- 1
векторы) (значение по умолчанию) | логический со значением true
или false
Отметьте, чтобы расширить выходные параметры в виде разделенной запятой пары, состоящей из 'ExpandOutput'
и логическое:
true
— Если true
, выходными параметрами является NRows
- NColumns
матрицы. NRows
количество борьбы за каждый столбец, и это определяется Strike
входной параметр. Например, Strike
может быть NRows
- 1
вектор или NRows
- NColumns
матрица. NColumns
определяется размерами AssetPrice
, Settle
, Maturity
, и OptSpec
, который должен все быть или скаляром или NColumns
- 1
векторы.
false
— Если false
, выходными параметрами является NINST
- 1
векторы. Кроме того, входные параметры Strike
, AssetPrice
, Settle
, Maturity
, и OptSpec
должен все быть или скаляр или NINST
- 1
векторы.
Типы данных: логический
PriceSens
— Цены опции или чувствительностьЦены опции или чувствительность, возвращенная как NINST
- 1
, или NRows
- NColumns
, В зависимости от ExpandOutput
. Аргумент пары "имя-значение" OutSpec
определяет типы и порядок выходных параметров.
vanilla option является категорией опций, которая включает только самые стандартные компоненты.
Опция ванили имеет дату истечения срока и прямую цену исполнения опциона. Американские параметры стиля и европейские параметры стиля оба категоризированы как опции ванили.
Выплата для опции ванили следующие:
Для вызова:
Для помещенного:
где:
St является ценой базового актива во время t.
K является ценой исполнения опциона.
Для получения дополнительной информации см. Опцию Ванили.
Модель диффузии скачка Мертона (Мертон (1976)) является различным расширением модели Black-Scholes, где внезапные перемещения цен активов (оба вверх и вниз) моделируются путем добавления параметров диффузии скачка с Пуассоновским процессом.
Стохастическое дифференциальное уравнение:
где
r является непрерывным безрисковым уровнем.
q является непрерывной дивидендной доходностью.
W t является процессом Вайнера.
J является случайным условным выражением размера скачка процента на появлении скачка, где ln
(1+J) нормально распределено со средним значением и стандартное отклонение δ, и (1+J) имеет логарифмически нормальное распределение:
μ J является средним значением J для (μ J>-1).
δ является стандартным отклонением ln
(1+J) для (δ ≥ 0).
ƛ p является ежегодной частотой (интенсивность) Пуассоновского процесса P t для (ƛ p ≥ 0).
σ является энергозависимостью цены активов на (σ> 0).
Характеристическая функция для j = 1 (мера цен активов) и j = 2 (нейтральная к риску мера):
где
ϕ является переменной характеристической функции.
τ является временем к зрелости (τ = T - t).
i является модульным мнимым числом (i 2 =-1).
Численное интегрирование используется, чтобы оценить непрерывный интеграл для обратного преобразования Фурье.
Метод численного интегрирования при Хестоне (1993) среда основан на следующих выражениях:
где
r является непрерывным безрисковым уровнем.
q является непрерывной дивидендной доходностью.
S t является ценой активов во время t.
K является забастовкой.
τ время к зрелости (τ = T-t).
Call (K) является досрочной ценой в забастовке K.
Put (K) является помещенной ценой в забастовке K.
i является модульным мнимым числом (i 2 =-1).
ϕ переменная характеристической функции.
f j (ϕ) является характеристической функцией для P j (j = 1,2).
P 1 является вероятностью S t> K под мерой цен активов для модели.
P 2 является вероятностью S t> K под нейтральной к риску мерой для модели.
Где j = 1,2 так, чтобы f 1 (ϕ) и f 2 (ϕ) был характеристическими функциями для вероятностей P 1 и P 2, соответственно.
Эта среда выбрана со значением по умолчанию “Heston1993”
для Framework
аргумент пары "имя-значение".
Численное интегрирование используется, чтобы оценить непрерывный интеграл для обратного преобразования Фурье.
Метод численного интегрирования при Льюисе (2001) среда основан на следующих выражениях:
где
r является непрерывным безрисковым уровнем.
q является непрерывной дивидендной доходностью.
S t является ценой активов во время t.
K является забастовкой.
τ время к зрелости (τ = T-t).
Call (K) является досрочной ценой в забастовке K.
Put (K) является помещенной ценой в забастовке K.
i является модульным мнимым числом (i 2 =-1).
ϕ переменная характеристической функции.
u является переменной характеристической функции для интегрирования, где .
f 2 (ϕ) является характеристической функцией для P 2.
P 2 является вероятностью S t> K под нейтральной к риску мерой для модели.
Эта среда выбрана со значением “Lewis2001”
для Framework
аргумент пары "имя-значение".
[1] Убавляет, D. S. “Скачки и стохастическая энергозависимость: процессы обменного курса, неявные в опциях немецкой марки”. Анализ финансовых исследований. Vol 9. № 1. 1996.
[2] Продолжение следует, R. и П. Танков. Финансовое моделирование с процессами скачка. Chapman & Hall/CRC Press, 2004.
[3] Хестон, S. L. “Решение закрытой формы для опций со стохастической энергозависимостью с приложениями к опциям связи и валюты”. Анализ финансовых исследований. Vol 6. № 2. 1993.
[4] Льюис, A. L. “Простая формула опции для общей диффузии скачка и других экспоненциальных процессов налога”. Предположите финансовые системы и OptionCity.net, 2001.
[5] Мертон, R. “Оценка опции, Когда Базовые Возвраты Запаса Прерывисты”. Журнал Финансовой Экономики. Vol 3. 1976.
optByBatesFFT
| optByBatesNI
| optByHestonFFT
| optByHestonNI
| optByMertonFFT
| optByMertonNI
| optSensByBatesFFT
| optSensByBatesNI
| optSensByHestonFFT
| optSensByHestonNI
| optSensByMertonFFT
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.