bandpass

Полосо-пропускающая фильтрация сигнала

Описание

y = bandpass(x,wpass) фильтрует входной сигнал x использование полосового фильтра с частотным диапазоном полосы пропускания, заданным двухэлементным векторным wpass и описал в нормированных единицах рад/отсчета π. bandpass использует фильтр минимального порядка с затуханием в полосе задерживания 60 дБ и компенсирует задержку, введенную фильтром. Если x матрица, функция фильтрует каждый столбец независимо.

пример

y = bandpass(x,fpass,fs) задает тот x был произведен на уровне fs герц. Двухэлементный векторный fpass задает частотный диапазон полосы пропускания фильтра в герц.

y = bandpass(xt,fpass) полосовые фильтры данные в расписании xt использование фильтра с частотным диапазоном полосы пропускания, заданным в герц двухэлементным векторным fpass. Функция независимо фильтрует все переменные в расписании и все столбцы в каждой переменной.

пример

y = bandpass(___,Name,Value) задает дополнительные опции для любого из предыдущих аргументов пары "имя-значение" использования синтаксисов. Можно изменить затухание в полосе задерживания, крутизну полосы перехода и тип импульсной характеристики фильтра.

пример

[y,d] = bandpass(___) также возвращает digitalFilter объект d используемый, чтобы отфильтровать вход.

bandpass(___) без выходных аргументов строит входной сигнал и накладывает отфильтрованный сигнал.

Примеры

свернуть все

Создайте сигнал, произведенный на уровне 1 кГц в течение 1 секунды. Сигнал содержит три тона, один на уровне 50 Гц, другого на уровне 150 Гц и одну треть на уровне 250 Гц. Высокочастотные и низкочастотные тоны оба имеют дважды амплитуду промежуточного тона. Сигнал встраивается в Гауссов белый шум отклонения 1/100.

fs = 1e3;
t = 0:1/fs:1;
x = [2 1 2]*sin(2*pi*[50 150 250]'.*t) + randn(size(t))/10;

Полосовой фильтр сигнал удалить низкочастотные и высокочастотные тоны. Задайте частоты полосы пропускания 100 Гц и 200 Гц. Отобразите исходные и отфильтрованные сигналы, и также их спектры.

bandpass(x,[100 200],fs)

Figure contains 2 axes. Axes 1 with title Bandpass Filtering (Fpass = [100 200] Hz) contains 2 objects of type line. These objects represent Original, Filtered. Axes 2 contains 2 objects of type line. These objects represent Original, Filtered.

Реализуйте основной синтезатор цифровой музыки и используйте его, чтобы проигрывать традиционную песню. Задайте частоту дискретизации 2 кГц. Постройте спектрограмму песни.

fs = 2e3;
t = 0:1/fs:0.3-1/fs;

l = [0 130.81 146.83 164.81 174.61 196.00 220 246.94];
m = [0 261.63 293.66 329.63 349.23 392.00 440 493.88];
h = [0 523.25 587.33 659.25 698.46 783.99 880 987.77];
note = @(f,g) [1 1 1]*sin(2*pi*[l(g) m(g) h(f)]'.*t);

mel = [3 2 1 2 3 3 3 0 2 2 2 0 3 5 5 0 3 2 1 2 3 3 3 3 2 2 3 2 1]+1;
acc = [3 0 5 0 3 0 3 3 2 0 2 2 3 0 5 5 3 0 5 0 3 3 3 0 2 2 3 0 1]+1;

song = [];
for kj = 1:length(mel)
    song = [song note(mel(kj),acc(kj)) zeros(1,0.01*fs)];
end
song = song/(max(abs(song))+0.1);

% To hear, type sound(song,fs)

pspectrum(song,fs,'spectrogram','TimeResolution',0.31, ...
    'OverlapPercent',0,'MinThreshold',-60)

Figure contains an axes. The axes with title Fres = 8.2798 Hz, Tres = 310 ms contains an object of type image.

Полосовой фильтр сигнал разделить средний регистр от других двух. Задайте частоты полосы пропускания 230 Гц и 450 Гц. Постройте исходные и отфильтрованные сигналы во временном и частотном диапазоне.

pong = bandpass(song,[230 450],fs);

% To hear, type sound(pong,fs)

bandpass(song,[230 450],fs)

Figure contains 2 axes. Axes 1 with title Bandpass Filtering (Fpass = [230 450] Hz) contains 2 objects of type line. These objects represent Original, Filtered. Axes 2 contains 2 objects of type line. These objects represent Original, Filtered.

Постройте спектрограмму среднего регистра.

figure
pspectrum(pong,fs,'spectrogram','TimeResolution',0.31, ...
    'OverlapPercent',0,'MinThreshold',-60)

Figure contains an axes. The axes with title Fres = 8.2798 Hz, Tres = 310 ms contains an object of type image.

Отфильтруйте белый шум, произведенный на уровне 1 кГц с помощью бесконечного полосового фильтра импульсной характеристики с шириной полосы пропускания 100 Гц. Используйте различные значения крутизны. Постройте спектры отфильтрованных сигналов.

fs = 1000;
x = randn(20000,1);

[y1,d1] = bandpass(x,[ 50 150],fs,'ImpulseResponse','iir','Steepness',0.5);
[y2,d2] = bandpass(x,[200 300],fs,'ImpulseResponse','iir','Steepness',0.8);
[y3,d3] = bandpass(x,[350 450],fs,'ImpulseResponse','iir','Steepness',0.95);

pspectrum([y1 y2 y3],fs)
legend('Steepness = 0.5','Steepness = 0.8','Steepness = 0.95', ...
    'Location','south')

Figure contains an axes. The axes with title Fres = 976.801 mHz contains 3 objects of type line. These objects represent Steepness = 0.5, Steepness = 0.8, Steepness = 0.95.

Вычислите и постройте частотные характеристики фильтров.

[h1,f] = freqz(d1,1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([h1 h2 h3])))
legend('Steepness = 0.5','Steepness = 0.8','Steepness = 0.95', ...
    'Location','south')
ylim([-100 10])

Figure contains an axes. The axes contains 3 objects of type line. These objects represent Steepness = 0.5, Steepness = 0.8, Steepness = 0.95.

Сделайте фильтры асимметричными путем определения различных значений крутизны в ниже и более высокие частоты полосы пропускания.

[y1,d1] = bandpass(x,[ 50 150],fs,'ImpulseResponse','iir','Steepness',[0.5 0.8]);
[y2,d2] = bandpass(x,[200 300],fs,'ImpulseResponse','iir','Steepness',[0.5 0.8]);
[y3,d3] = bandpass(x,[350 450],fs,'ImpulseResponse','iir','Steepness',[0.5 0.8]);

pspectrum([y1 y2 y3],fs)

Figure contains an axes. The axes with title Fres = 976.801 mHz contains 3 objects of type line.

Вычислите и постройте частотные характеристики фильтров.

[h1,f] = freqz(d1,1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([h1 h2 h3])))
ylim([-100 10])

Figure contains an axes. The axes contains 3 objects of type line.

Входные параметры

свернуть все

Входной сигнал в виде вектора или матрицы.

Пример: sin(2*pi*(0:127)/16)+randn(1,128)/100 задает шумную синусоиду

Пример: [2 1].*sin(2*pi*(0:127)'./[16 64]) задает двухканальную синусоиду.

Типы данных: single | double
Поддержка комплексного числа: Да

Нормированный частотный диапазон полосы пропускания в виде двухэлементного вектора с элементами в интервале (0, 1).

Частотный диапазон полосы пропускания в виде двухэлементного вектора с элементами в интервале (0, fs/2).

Частота дискретизации в виде положительного действительного скаляра.

Введите расписание. xt должен содержать увеличение, конечные, и равномерно распределенные времена строки типа duration в секундах.

Если расписание имеет пропавших без вести или дублирующиеся моменты времени, можно зафиксировать его с помощью советов в Чистом Расписании с Пропавшими без вести, Копией, или Неоднородные Времена.

Пример: timetable(seconds(0:4)',randn(5,1),randn(5,2)) содержит одноканальный случайный сигнал и двухканальный случайный сигнал, произведенный на уровне 1 Гц в течение 4 секунд.

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: 'ImpulseResponse','iir','StopbandAttenuation',30 фильтрует вход с помощью БИХ-фильтра минимального порядка, который ослабляет на 30 дБ частоты, меньшие, чем fpass(1) и частоты, больше, чем fpass(2).

Тип импульсной характеристики фильтра в виде разделенной запятой пары, состоящей из 'ImpulseResponse' и 'fir', 'iir', или 'auto'.

  • 'fir' — Функция проектирует минимальный порядок, линейную фазу, фильтр конечной импульсной характеристики (FIR). Чтобы компенсировать задержку, функция добавляет к входному сигналу N/2 нули, где N является порядком фильтра. Функция затем фильтрует сигнал и удаляет первый N/2 выборки выхода.

    В этом случае входной сигнал должен быть, по крайней мере, в два раза длиннее, чем фильтром, который выполняет техническим требованиям.

  • 'iir' — Функция проектирует фильтр бесконечной импульсной характеристики (IIR) минимального порядка и использует filtfilt функция, чтобы выполнить фильтрацию нулевой фазы и компенсировать задержку фильтра.

    Если сигнал не по крайней мере в три раза более длинен, чем фильтр, который выполняет техническим требованиям, функция проектирует фильтр с меньшим порядком и таким образом меньшей крутизной.

  • 'auto' — Функция проектирует КИХ-фильтр минимального порядка, если входной сигнал достаточно длинен, и БИХ-фильтр минимального порядка в противном случае. А именно, функция выполняет эти шаги:

    • Вычислите минимальный порядок, что КИХ-фильтру, должно быть, придется выполнить техническим требованиям. Если сигнал является, по крайней мере, в два раза длиннее, чем необходимым порядком фильтра, проектом, и используйте тот фильтр.

    • Если сигнал не достаточно длинен, вычислите минимальный порядок, что БИХ-фильтру, должно быть, придется выполнить техническим требованиям. Если сигнал по крайней мере в три раза более длинен, чем необходимый порядок фильтра, проект, и используйте тот фильтр.

    • Если сигнал не достаточно длинен, обрежьте порядок до одной трети длина сигнала и спроектируйте БИХ-фильтр того порядка. Сокращение порядка происходит за счет крутизны полосы перехода.

    • Отфильтруйте сигнал и компенсируйте задержку.

Крутизна полосы перехода в виде разделенной запятой пары, состоящей из 'Steepness' и скалярный или двухэлементный вектор с элементами в интервале [0.5, 1). Когда крутизна увеличивается, ответ фильтра приближается к идеальному полосовому ответу, но получившаяся длина фильтра и вычислительная стоимость операции фильтрации также увеличиваются. Смотрите Крутизну Полосового фильтра для получения дополнительной информации.

Отфильтруйте затухание в полосе задерживания в виде разделенной запятой пары, состоящей из 'StopbandAttenuation' и положительная скалярная величина в дБ.

Выходные аргументы

свернуть все

Фильтрованный сигнал, возвращенный как вектор, матрица или расписание с теми же размерностями как вход.

Полосовой фильтр используется в операции фильтрации, возвращенной как digitalFilter объект.

  • Использование filter(d,x) отфильтровать x сигнала использование d.

  • Используйте FVTool, чтобы визуализировать ответ фильтра.

  • Использование designfilt отредактировать или сгенерировать цифровой фильтр на основе технических требований частотной характеристики.

Больше о

свернуть все

Крутизна полосового фильтра

'Steepness' аргумент управляет шириной областей перехода фильтра. Чем ниже крутизна, тем шире область перехода. Чем выше крутизна, тем более узкий область перехода.

Чтобы интерпретировать крутизну фильтра, рассмотрите следующие определения:

  • Частота Найквиста, f Найквист, является самой высокой частотной составляющей сигнала, который может быть произведен на данном уровне без искажения. Найквисту f 1 год (×π рад/отсчет), когда у входного сигнала нет времени информация и fs/2 герц, когда входной сигнал является расписанием или когда вы задаете частоту дискретизации.

  • Более низкие и верхние частоты полосы задерживания фильтра, f stoplower и f stopupper, являются частотами, ниже которых и выше который затухание равно или больше, чем значение, заданное с помощью 'StopbandAttenuation'.

  • Более низкой шириной перехода фильтра, W ниже, является fpassнижеf stoplower, где fpassниже первый элемент fpass.

  • Верхней шириной перехода фильтра, верхний W, является f stopupper fpassверхний, где fpassверхний второй элемент fpass.

  • Большинство неидеальных фильтров также ослабляет входной сигнал через полосу пропускания. Максимальное значение этого зависимого частотой затухания называется неравномерностью в полосе пропускания. Каждый фильтр, используемый bandpass имеет неравномерность в полосе пропускания 0,1 дБ.

Чтобы управлять шириной полос перехода, можно задать 'Steepness' как любой двухэлементный вектор, [s ниже, s, верхний], или скаляр. Когда вы задаете 'Steepness' как вектор, функция:

  • Вычисляет более низкую ширину перехода как

    W ниже = (1 – s ниже) × fpassниже.

    • Когда первый элемент 'Steepness' равно 0,5, ширина перехода составляет 50% fpassниже.

    • Как первый элемент 'Steepness' подходы 1, ширина перехода прогрессивно становится более узкой, пока она не достигает минимального значения 1% fpassниже.

  • Вычисляет верхнюю ширину перехода как

    W, верхний = (1 – верхний s) × (f Найквистfpassверхний.

    • Когда второй элемент 'Steepness' равно 0,5, ширина перехода составляет 50% (f Найквистfpassверхний.

    • Как второй элемент 'Steepness' подходы 1, ширина перехода прогрессивно становится более узкой, пока она не достигает минимального значения 1% (f Найквистfpassверхний.

Когда вы задаете 'Steepness' как скаляр, функция проектирует фильтр с равными более низкими и верхними ширинами перехода. Значение по умолчанию 'Steepness' 0.85.

Смотрите также

Приложения

Функции

Введенный в R2018a
Для просмотра документации необходимо авторизоваться на сайте