Ансамбли классификации

Повышение, случайный лес, укладывание в мешки, случайное подпространство и ансамбли ECOC для изучения мультикласса

Ансамбль классификации является прогнозной моделью, состоявшей из взвешенной комбинации нескольких моделей классификации. В общем случае объединение нескольких моделей классификации увеличивает прогнозирующую эффективность.

Чтобы исследовать ансамбли классификации в интерактивном режиме, используйте  приложение Classification Learner. Для большей гибкости используйте fitcensemble в интерфейсе командной строки, чтобы повысить или сложить деревья классификации в мешок или вырастить случайный лес [12]. Для получения дополнительной информации на всех поддерживаемых ансамблях, см. Алгоритмы Ансамбля. Чтобы уменьшать проблему мультикласса в ансамбль бинарных проблем классификации, обучите модель выходных кодов с коррекцией ошибок (ECOC). Для получения дополнительной информации смотрите fitcecoc.

Чтобы повысить деревья регрессии с помощью LSBoost или вырастить случайный лес деревьев регрессии [12], смотрите Ансамбли Регрессии.

Приложения

Classification LearnerОбучите модели классифицировать данные с помощью машинного обучения с учителем

Блоки

ClassificationEnsemble PredictКлассифицируйте ансамбль использования наблюдений деревьев решений

Функции

развернуть все

templateDiscriminantШаблон классификатора дискриминантного анализа
templateECOCВыходной шаблон ученика кода с коррекцией ошибок
templateEnsembleАнсамбль, изучающий шаблон
templateKNNk- соседний шаблон классификатора
templateLinearЛинейный шаблон ученика классификации
templateNaiveBayesШаблон Наивного классификатора Байеса
templateSVMШаблон машины опорных векторов
templateTreeСоздайте шаблон дерева решений
fitcensembleПодходящий ансамбль учеников для классификации
predictКлассифицируйте ансамбль использования наблюдений моделей классификации
oobPredictПредскажите ответ из сумки ансамбля
TreeBaggerСоздайте мешок деревьев решений
fitcensembleПодходящий ансамбль учеников для классификации
predictПредскажите ансамбль использования ответов сложенных в мешок деревьев решений
oobPredictПредсказания ансамбля для наблюдений из сумки
fitcecocПодбирайте модели мультикласса для машин опорных векторов или других классификаторов
templateSVMШаблон машины опорных векторов
predictКлассифицируйте наблюдения с помощью модели выходных кодов с коррекцией ошибок (ECOC) мультикласса

Классы

развернуть все

ClassificationEnsembleКлассификатор ансамбля
CompactClassificationEnsembleКомпактный класс ансамбля классификации
ClassificationPartitionedEnsembleПерекрестный подтвержденный ансамбль классификации
TreeBaggerМешок деревьев решений
CompactTreeBaggerКомпактный ансамбль деревьев решений выращен агрегацией начальной загрузки
ClassificationBaggedEnsembleАнсамбль классификации, выращенный путем передискретизации
ClassificationECOCМодель Multiclass для машин опорных векторов (SVMs) и других классификаторов
CompactClassificationECOCКомпактная модель мультикласса для машин опорных векторов (SVMs) и других классификаторов
ClassificationPartitionedECOCПерекрестный подтвержденный мультикласс модель ECOC для машин опорных векторов (SVMs) и других классификаторов

Темы

Обучите классификаторы ансамбля Используя приложение Classification Learner

Создайте и сравните классификаторы ансамбля и экспортируйте обученные модели, чтобы сделать предсказания для новых данных.

Среда для приобретения знаний ансамблем

Получите очень точные предсказания при помощи многих слабых учеников.

Алгоритмы ансамбля

Узнайте о различных алгоритмах для приобретения знаний ансамблем.

Обучите ансамбль классификации

Обучите простой ансамбль классификации.

Протестируйте качество ансамбля

Изучите методы, чтобы оценить прогнозирующее качество ансамбля.

Обработайте неустойчивые данные или неравные затраты Misclassification в ансамблях классификации

Узнать, как установить предшествующие вероятности класса и затраты misclassification.

Классификация с неустойчивыми данными

Используйте алгоритм RUSBoost для классификации, когда один или несколько классов будут превалировать в ваших данных.

LPBoost и TotalBoost для малочисленных ансамблей

Создайте малочисленные ансамбли при помощи алгоритмов TotalBoost и LPBoost. (LPBoost и TotalBoost требуют Optimization Toolbox™.)

Настройте RobustBoost

Настройте параметры RobustBoost для лучшей прогнозирующей точности. (RobustBoost требует Optimization Toolbox.)

Суррогатные разделения

Получите лучшие предсказания, когда у вас будут недостающие данные при помощи суррогатных разделений.

Обучите ансамбль классификации параллельно

Обучите уволенный ансамбль параллельно восстанавливаемо.

Загрузите агрегацию (укладывание в мешки) деревьев классификации Используя TreeBagger

Создайте TreeBagger ансамбль для классификации.

Кредитный рейтинг путем укладывания в мешки деревьев решений

В этом примере показано, как создать автоматизированный инструмент кредитного рейтинга.

Случайная классификация подпространств

Увеличьте точность классификации при помощи случайного ансамбля подпространства.

Предскажите, что метки класса Используя ClassificationEnsemble предсказывают блок

Обучите модель ансамбля классификации оптимальными гиперпараметрами, и затем используйте блок ClassificationEnsemble Predict для предсказания метки.

Для просмотра документации необходимо авторизоваться на сайте