Компактная обобщенная аддитивная модель (GAM) для бинарной классификации
CompactClassificationGAM
компактная версия ClassificationGAM
объект модели (GAM для бинарной классификации). Компактная модель не включает данные, используемые для обучения классификатор. Поэтому вы не можете выполнить некоторые задачи, такие как перекрестная проверка, с помощью компактной модели. Используйте компактную модель для задач, таких как предсказание меток новых данных.
Создайте CompactClassificationGAM
объект от полного ClassificationGAM
объект модели при помощи compact
.
Interactions
— Индексы периода взаимодействия[]
Это свойство доступно только для чтения.
Индексы периода взаимодействия в виде t
- 2 матрицы положительных целых чисел, где t
номер периодов взаимодействия в модели. Каждая строка матрицы представляет один период взаимодействия и содержит индексы столбца данных о предикторе X
в течение периода взаимодействия. Если модель не включает период взаимодействия, то это свойство пусто ([]
).
Программное обеспечение добавляет периоды взаимодействия в модель в порядке важности на основе p - значения. Используйте это свойство проверять порядок периодов взаимодействия, добавленных к модели.
Типы данных: double
Intercept
— Прервите термин моделиЭто свойство доступно только для чтения.
Прервите (постоянный) термин модели, которая является суммой условий точки пересечения в деревьях предиктора и деревьях взаимодействия в виде числового скаляра.
Типы данных: single
| double
CategoricalPredictors
— Категориальные индексы предиктора[]
Это свойство доступно только для чтения.
Категориальные индексы предиктора в виде вектора из положительных целых чисел. CategoricalPredictors
содержит значения индекса, соответствующие столбцам данных о предикторе, которые содержат категориальные предикторы. Если ни один из предикторов не является категориальным, то это свойство пусто ([]
).
Типы данных: double
ClassNames
— Уникальные метки классаЭто свойство доступно только для чтения.
Уникальные метки класса, используемые в обучении в виде категориального или символьного массива, логического или числового вектора или массива ячеек из символьных векторов. ClassNames
имеет совпадающий тип данных, когда класс маркирует Y
. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.)
ClassNames
также определяет порядок класса.
Типы данных: single
| double
| logical
| char
| cell
| categorical
Cost
— Затраты MisclassificationMisclassification стоит в виде числовой матрицы 2 на 2.
Стойте (
стоимость классификации точки в класс i
J
)j
если его истинным классом является i
. Порядок строк и столбцов Cost
соответствует порядку классов в ClassNames
.
Программное обеспечение использует Cost
значение для предсказания, но не обучение. Можно изменить значение при помощи записи через точку.
Пример: Mdl.Cost = C;
Типы данных: double
ExpandedPredictorNames
— Расширенные имена предиктораЭто свойство доступно только для чтения.
Расширенный предиктор называет в виде массива ячеек из символьных векторов.
ExpandedPredictorNames
совпадает с PredictorNames
для обобщенной аддитивной модели.
Типы данных: cell
PredictorNames
— Имена переменного предиктораЭто свойство доступно только для чтения.
Переменный предиктор называет в виде массива ячеек из символьных векторов. Порядок элементов PredictorNames
соответствует порядку, в котором имена предиктора появляются в обучающих данных.
Типы данных: cell
Prior
— Предшествующие вероятности классаЭто свойство доступно только для чтения.
Предшествующие вероятности класса в виде числового вектора с двумя элементами. Порядок элементов соответствует порядку элементов в ClassNames
.
Типы данных: double
ResponseName
— Имя переменной откликаЭто свойство доступно только для чтения.
Имя переменной отклика в виде вектора символов.
Типы данных: char
ScoreTransform
— Выиграйте преобразованиеВыиграйте преобразование в виде вектора символов или указателя на функцию. ScoreTransform
представляет встроенную функцию преобразования или указатель на функцию для преобразования предсказанных классификационных оценок.
Чтобы изменить преобразование счета функционируют к function
, например, используйте запись через точку.
Для встроенной функции введите вектор символов.
Mdl.ScoreTransform = 'function';
Эта таблица описывает доступные встроенные функции.
Значение | Описание |
---|---|
'doublelogit' | 1/(1 + e –2x) |
'invlogit' | журнал (x / (1 – x)) |
'ismax' | Устанавливает счет к классу с самым большим счетом к 1 и устанавливает музыку ко всем другим классам к 0 |
'logit' | 1/(1 + e –x) |
'none' или 'identity' | x (никакое преобразование) |
'sign' | – 1 для x <0 0 для x = 0 1 для x> 0 |
'symmetric' | 2x – 1 |
'symmetricismax' | Устанавливает счет к классу с самым большим счетом к 1 и устанавливает музыку ко всем другим классам к –1 |
'symmetriclogit' | 2/(1 + e –x) – 1 |
Для функции MATLAB® или функции, которую вы задаете, введите ее указатель на функцию.
Mdl.ScoreTransform = @function;
function
должен принять матрицу (исходные баллы) и возвратить матрицу, одного размера (преобразованные баллы).
Это свойство определяет выходной расчет счета для объектных функций такой как predict
, margin
, и edge
. Используйте 'logit'
вычислить апостериорные вероятности и использовать 'none'
вычислить логит апостериорных вероятностей.
Типы данных: char |
function_handle
lime | Локальные поддающиеся толкованию объяснения модели агностические (LIME) |
partialDependence | Вычислите частичную зависимость |
plotLocalEffects | Постройте локальные эффекты условий в обобщенной аддитивной модели (GAM) |
plotPartialDependence | Создайте графики отдельного условного ожидания (ICE) и частичный график зависимости (PDP) |
shapley | Шепли оценивает |
compareHoldout | Сравните точность двух моделей классификации с помощью новых данных |
Уменьшайте размер полной обобщенной аддитивной модели (GAM) путем удаления обучающих данных. Полные модели содержат обучающие данные. Можно использовать компактную модель, чтобы повысить эффективность памяти.
Загрузите ionosphere
набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b'
) или хороший ('g'
).
load ionosphere
Обучите GAM с помощью предикторов X
и класс маркирует Y
. Методические рекомендации должны задать имена классов.
Mdl = fitcgam(X,Y,'ClassNames',{'b','g'})
Mdl = ClassificationGAM ResponseName: 'Y' CategoricalPredictors: [] ClassNames: {'b' 'g'} ScoreTransform: 'logit' Intercept: 2.2715 NumObservations: 351 Properties, Methods
Mdl
ClassificationGAM
объект модели.
Уменьшайте размер классификатора.
CMdl = compact(Mdl)
CMdl = CompactClassificationGAM ResponseName: 'Y' CategoricalPredictors: [] ClassNames: {'b' 'g'} ScoreTransform: 'logit' Intercept: 2.2715 Properties, Methods
CMdl
CompactClassificationGAM
объект модели.
Отобразите объем памяти, используемый каждым классификатором.
whos('Mdl','CMdl')
Name Size Bytes Class Attributes CMdl 1x1 1030010 classreg.learning.classif.CompactClassificationGAM Mdl 1x1 1230986 ClassificationGAM
Полный классификатор (Mdl
) больше, чем компактный классификатор (CMdl
).
Чтобы эффективно пометить новые наблюдения, можно удалить Mdl
от MATLAB® Workspace, и затем передают CMdl
и новые значения предиктора к predict
.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.