Класс: GeneralizedLinearMixedModel
Отобразите обобщенную линейную модель смешанных эффектов
glme — Обобщенная линейная модель смешанных эффектовGeneralizedLinearMixedModel объектОбобщенная линейная модель смешанных эффектов в виде GeneralizedLinearMixedModel объект. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel.
Загрузите выборочные данные.
load mfrЭти симулированные данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:
Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess)
Время вычислений для каждого пакета, в часах (time)
Температура пакета, в градусах Цельсия (temp)
Категориальная переменная, указывающая на поставщика химиката, используемого в пакете (supplier)
Количество дефектов в пакете (defects)
Данные также включают time_dev и temp_dev, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.
Подбирайте обобщенную линейную модель смешанных эффектов использование newprocess, time_dev, temp_dev, и supplier как предикторы фиксированных эффектов. Включайте термин случайных эффектов для точки пересечения, сгруппированной factory, с учетом качественных различий, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects', таким образом, фиктивные переменные коэффициенты суммируют к 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной линейной модели смешанных эффектов
где
количество дефектов, наблюдаемых в пакете, произведенном фабрикой во время пакета .
среднее количество дефектов, соответствующих фабрике (где ) во время пакета (где ).
, , и измерения для каждой переменной, которые соответствуют фабрике во время пакета . Например, указывает ли пакет, произведенный фабрикой во время пакета используемый новый процесс.
и фиктивные переменные, которые используют эффекты (сумма к нулю) кодирование, чтобы указать ли компания C или B, соответственно, предоставленный химикаты процесса для пакета производятся фабрикой во время пакета .
точка пересечения случайных эффектов для каждой фабрики это составляет специфичное для фабрики изменение по качеству.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Отобразите модель.
disp(glme)
Generalized linear mixed-effects model fit by ML
Model information:
Number of observations 100
Fixed effects coefficients 6
Random effects coefficients 20
Covariance parameters 1
Distribution Poisson
Link Log
FitMethod Laplace
Formula:
defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)
Model fit statistics:
AIC BIC LogLikelihood Deviance
416.35 434.58 -201.17 402.35
Fixed effects coefficients (95% CIs):
Name Estimate SE tStat DF pValue
{'(Intercept)'} 1.4689 0.15988 9.1875 94 9.8194e-15
{'newprocess' } -0.36766 0.17755 -2.0708 94 0.041122
{'time_dev' } -0.094521 0.82849 -0.11409 94 0.90941
{'temp_dev' } -0.28317 0.9617 -0.29444 94 0.76907
{'supplier_C' } -0.071868 0.078024 -0.9211 94 0.35936
{'supplier_B' } 0.071072 0.07739 0.91836 94 0.36078
Lower Upper
1.1515 1.7864
-0.72019 -0.015134
-1.7395 1.5505
-2.1926 1.6263
-0.22679 0.083051
-0.082588 0.22473
Random effects covariance parameters:
Group: factory (20 Levels)
Name1 Name2 Type Estimate
{'(Intercept)'} {'(Intercept)'} {'std'} 0.31381
Group: Error
Name Estimate
{'sqrt(Dispersion)'} 1
Model information таблица показывает общее количество наблюдений в выборочных данных (100), количество фиксированных - и коэффициенты случайных эффектов (6 и 20, соответственно), и количество параметров ковариации (1). Это также указывает, что переменная отклика имеет Poisson распределение, функцией ссылки является Log, и подходящим методом является Laplace.
Formula указывает на спецификацию модели с помощью обозначения Уилкинсона.
Model fit statistics табличная статистика отображений раньше оценивала качество подгонки модели. Это включает критерий информации о Akaike (AIC), Байесов информационный критерий (BIC) значения, логарифмическая вероятность (LogLikelihood), и отклонение (DevianceЗначения.
Fixed effects coefficients таблица показывает тот fitglme возвращенные 95% доверительных интервалов. Это содержит одну строку для каждого предиктора фиксированных эффектов, и каждый столбец содержит статистику, соответствующую тому предиктору. Столбец 1 (Name) содержит имя каждого коэффициента фиксированных эффектов, столбец 2 (Estimate) содержит его ориентировочную стоимость и столбец 3 (SE) содержит стандартную погрешность коэффициента. Столбец 4 (tStat) содержит - статистическая величина для теста гипотезы, что коэффициент равен 0. Столбец 5 (DF) и столбец 6 (pValue) содержите степени свободы и - значение, которые соответствуют - статистическая величина, соответственно. Последние два столбца (Lower и Upper) отобразите нижние и верхние пределы, соответственно, 95%-го доверительного интервала для каждого коэффициента фиксированных эффектов.
Random effects covariance parameters отображает таблицу для каждой сгруппированной переменной (здесь, только factory), включая его общее количество уровней (20), и тип и оценка параметра ковариации. Здесь, std указывает на тот fitglme возвращает стандартное отклонение случайного эффекта, сопоставленного с предиктором фабрики, который имеет ориентировочную стоимость 0,31381. Это также отображает таблицу, содержащую тип параметра ошибок (здесь, квадратный корень из дисперсионного параметра), и его ориентировочная стоимость 1.
Стандартное отображение сгенерировано fitglme не обеспечивает доверительные интервалы для параметров случайных эффектов. Чтобы вычислить и отобразить эти значения, используйте covarianceParameters.
Критерием информации о Akaike (AIC) является AIC = –2logLM + 2 (param).
logLM зависит от метода, используемого, чтобы подбирать модель.
Если вы используете 'Laplace' или 'ApproximateLaplace', затем logLM является максимизируемой логарифмической вероятностью.
Если вы используете 'MPL', затем logLM является максимизируемой логарифмической вероятностью псевдо данных из итоговой псевдо итерации вероятности.
Если вы используете 'REMPL', затем logLM является максимизируемой ограниченной логарифмической вероятностью псевдо данных из итоговой псевдо итерации вероятности.
param является общим количеством параметров, оцененных в модели. Для большинства моделей GLME param равен nc + p + 1, где nc является общим количеством параметров в ковариации случайных эффектов, исключая остаточное отклонение, и p является количеством коэффициентов фиксированных эффектов. Однако, если дисперсионный параметр фиксируется в 1,0 для бинома или распределений Пуассона, то param равен (nc + p).
Байесовым информационным критерием (BIC) является BIC = –2*logLM + ln (neff) (param).
logLM зависит от метода, используемого, чтобы подбирать модель.
Если вы используете 'Laplace' или 'ApproximateLaplace', затем logLM является максимизируемой логарифмической вероятностью.
Если вы используете 'MPL', затем logLM является максимизируемой логарифмической вероятностью псевдо данных из итоговой псевдо итерации вероятности.
Если вы используете 'REMPL', затем logLM является максимизируемой ограниченной логарифмической вероятностью псевдо данных из итоговой псевдо итерации вероятности.
neff является эффективным количеством наблюдений.
Если вы используете 'MPL', 'Laplace', или 'ApproximateLaplace', затем neff = n, где n является количеством наблюдений.
Если вы используете 'REMPL', затем neff = n – p.
param является общим количеством параметров, оцененных в модели. Для большинства моделей GLME param равен nc + p + 1, где nc является общим количеством параметров в ковариации случайных эффектов, исключая остаточное отклонение, и p является количеством коэффициентов фиксированных эффектов. Однако, если дисперсионный параметр фиксируется в 1,0 для бинома или распределений Пуассона, то param равен (nc + p).
Нижнее значение отклонения указывает на лучшую подгонку. Когда значение отклонения уменьшается, и AIC и BIC имеют тенденцию уменьшаться. И AIC и BIC также включают условия штрафа на основе количества оцененных параметров, p. Так, когда количество увеличения параметров, значения AIC и BIC имеют тенденцию увеличиваться также. При сравнении различных моделей модель с самым низким AIC или значением BIC рассматривается как модель оптимальной подгонки.
Для моделей, подбиравших с помощью 'MPL' и 'REMPL', AIC и BIC основаны на логарифмической вероятности (или ограниченной логарифмической вероятности) псевдо данных из итоговой псевдо итерации вероятности. Поэтому прямое сравнение AIC и значений BIC между моделями, подбиравшими с помощью 'MPL' и 'REMPL' не является соответствующим.
covarianceParameters | fitglme | GeneralizedLinearMixedModel
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.