disp

Класс: GeneralizedLinearMixedModel

Отобразите обобщенную линейную модель смешанных эффектов

Синтаксис

Описание

пример

disp(glme) отображения соответствовали обобщенной линейной модели glme смешанных эффектов.

Входные параметры

развернуть все

Обобщенная линейная модель смешанных эффектов в виде GeneralizedLinearMixedModel объект. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel.

Примеры

развернуть все

Загрузите выборочные данные.

load mfr

Эти симулированные данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:

  • Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess)

  • Время вычислений для каждого пакета, в часах (time)

  • Температура пакета, в градусах Цельсия (temp)

  • Категориальная переменная, указывающая на поставщика химиката, используемого в пакете (supplier)

  • Количество дефектов в пакете (defects)

Данные также включают time_dev и temp_dev, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.

Подбирайте обобщенную линейную модель смешанных эффектов использование newprocess, time_dev, temp_dev, и supplier как предикторы фиксированных эффектов. Включайте термин случайных эффектов для точки пересечения, сгруппированной factory, с учетом качественных различий, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects', таким образом, фиктивные переменные коэффициенты суммируют к 0.

Количество дефектов может быть смоделировано с помощью распределения Пуассона

defectsijПуассон(μij)

Это соответствует обобщенной линейной модели смешанных эффектов

log(μij)=β0+β1newprocessij+β2time_devij+β3temp_devij+β4supplier_Cij+β5supplier_Bij+bi,

где

  • defectsij количество дефектов, наблюдаемых в пакете, произведенном фабрикой i во время пакета j.

  • μij среднее количество дефектов, соответствующих фабрике i (где i=1,2,...,20) во время пакета j (где j=1,2,...,5).

  • newprocessij, time_devij, и temp_devij измерения для каждой переменной, которые соответствуют фабрике i во время пакета j. Например, newprocessij указывает ли пакет, произведенный фабрикой i во время пакета j используемый новый процесс.

  • supplier_Cij и supplier_Bij фиктивные переменные, которые используют эффекты (сумма к нулю) кодирование, чтобы указать ли компания C или B, соответственно, предоставленный химикаты процесса для пакета производятся фабрикой i во время пакета j.

  • biN(0,σb2) точка пересечения случайных эффектов для каждой фабрики i это составляет специфичное для фабрики изменение по качеству.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Отобразите модель.

disp(glme)
Generalized linear mixed-effects model fit by ML

Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    416.35    434.58    -201.17          402.35  

Fixed effects coefficients (95% CIs):
    Name                   Estimate     SE          tStat       DF    pValue    
    {'(Intercept)'}           1.4689     0.15988      9.1875    94    9.8194e-15
    {'newprocess' }         -0.36766     0.17755     -2.0708    94      0.041122
    {'time_dev'   }        -0.094521     0.82849    -0.11409    94       0.90941
    {'temp_dev'   }         -0.28317      0.9617    -0.29444    94       0.76907
    {'supplier_C' }        -0.071868    0.078024     -0.9211    94       0.35936
    {'supplier_B' }         0.071072     0.07739     0.91836    94       0.36078


    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473

Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.31381 

Group: Error
    Name                        Estimate
    {'sqrt(Dispersion)'}        1       

Model information таблица показывает общее количество наблюдений в выборочных данных (100), количество фиксированных - и коэффициенты случайных эффектов (6 и 20, соответственно), и количество параметров ковариации (1). Это также указывает, что переменная отклика имеет Poisson распределение, функцией ссылки является Log, и подходящим методом является Laplace.

Formula указывает на спецификацию модели с помощью обозначения Уилкинсона.

Model fit statistics табличная статистика отображений раньше оценивала качество подгонки модели. Это включает критерий информации о Akaike (AIC), Байесов информационный критерий (BIC) значения, логарифмическая вероятность (LogLikelihood), и отклонение (DevianceЗначения.

Fixed effects coefficients таблица показывает тот fitglme возвращенные 95% доверительных интервалов. Это содержит одну строку для каждого предиктора фиксированных эффектов, и каждый столбец содержит статистику, соответствующую тому предиктору. Столбец 1 (Name) содержит имя каждого коэффициента фиксированных эффектов, столбец 2 (Estimate) содержит его ориентировочную стоимость и столбец 3 (SE) содержит стандартную погрешность коэффициента. Столбец 4 (tStat) содержит t- статистическая величина для теста гипотезы, что коэффициент равен 0. Столбец 5 (DF) и столбец 6 (pValue) содержите степени свободы и p- значение, которые соответствуют t- статистическая величина, соответственно. Последние два столбца (Lower и Upper) отобразите нижние и верхние пределы, соответственно, 95%-го доверительного интервала для каждого коэффициента фиксированных эффектов.

Random effects covariance parameters отображает таблицу для каждой сгруппированной переменной (здесь, только factory), включая его общее количество уровней (20), и тип и оценка параметра ковариации. Здесь, std указывает на тот fitglme возвращает стандартное отклонение случайного эффекта, сопоставленного с предиктором фабрики, который имеет ориентировочную стоимость 0,31381. Это также отображает таблицу, содержащую тип параметра ошибок (здесь, квадратный корень из дисперсионного параметра), и его ориентировочная стоимость 1.

Стандартное отображение сгенерировано fitglme не обеспечивает доверительные интервалы для параметров случайных эффектов. Чтобы вычислить и отобразить эти значения, используйте covarianceParameters.

Больше о

развернуть все

Для просмотра документации необходимо авторизоваться на сайте