Класс: GeneralizedLinearMixedModel
Предскажите ответ обобщенной линейной модели смешанных эффектов
возвращается предсказанное условное выражение означает использовать новые значения предиктора, заданные в ypred
= predict(glme
,tblnew
)tblnew
.
Если сгруппированная переменная в tblnew
имеет уровни, которые не находятся в исходных данных, затем случайные эффекты для той сгруппированной переменной не способствуют 'Conditional'
предсказание при наблюдениях, где сгруппированная переменная имеет новые уровни.
возвращает предсказанные условные средние значения ответа с помощью дополнительных опций, заданных одним или несколькими ypred
= predict(___,Name,Value
)Name,Value
парные аргументы. Например, можно задать доверительный уровень, одновременные доверительные границы или вклады только от фиксированных эффектов. Можно комбинировать с любым синтаксом из перечисленных выше.
glme
— Обобщенная линейная модель смешанных эффектовGeneralizedLinearMixedModel
объектОбобщенная линейная модель смешанных эффектов в виде GeneralizedLinearMixedModel
объект. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel
.
tblnew
— Новые входные данныеdataset
массивНовые входные данные, который включает переменную отклика, переменные предикторы и сгруппированные переменные в виде массива набора данных или таблицы. Переменные предикторы могут быть непрерывными или сгруппированные переменные. tblnew
должен иметь те же переменные как исходная таблица или массив набора данных, используемый в fitglme
соответствовать обобщенной линейной модели glme
смешанных эффектов.
Задайте дополнительные разделенные запятой пары Name,Value
аргументы. Name
имя аргумента и Value
соответствующее значение. Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN
.
'Alpha'
— Уровень значенияУровень значения в виде разделенной запятой пары, состоящей из 'Alpha'
и скалярное значение в области значений [0,1]. Для значения α, доверительный уровень является 100 × (1 – α) %.
Например, для 99% доверительных интервалов, можно задать доверительный уровень можно следующим образом.
Пример: 'Alpha',0.01
Типы данных: single
| double
'Conditional'
— Индикатор для условных предсказанийtrue
(значение по умолчанию) | false
Индикатор для условных предсказаний в виде разделенной запятой пары, состоящей из 'Conditional'
и одно из следующих.
Значение | Описание |
---|---|
true | Вклады и от зафиксированных эффектов и от случайных эффектов (условное выражение) |
false | Вклад только от фиксированных (крайних) эффектов |
Пример: 'Conditional',false
'DFMethod'
— Метод для вычисления аппроксимированных степеней свободы'residual'
(значение по умолчанию) | 'none'
Метод для вычисления аппроксимированных степеней свободы в виде разделенной запятой пары, состоящей из 'DFMethod'
и одно из следующих.
Значение | Описание |
---|---|
'residual' | Значение степеней свободы принято постоянным и равно n – p, где n является количеством наблюдений, и p является количеством фиксированных эффектов. |
'none' | Степени свободы установлены в бесконечность. |
Пример: 'DFMethod','none'
'Offset'
— Смещение моделиzeros(m,1)
(значение по умолчанию) | m-by-1 вектор из скалярных значенийСмещение модели в виде вектора из скалярных значений длины m, где m является количеством строк в tblnew
. Смещение используется в качестве дополнительного предиктора и зафиксировало содействующее значение в 1
.
'Simultaneous'
— Тип доверительных границfalse
(значение по умолчанию) | true
Тип доверительных границ в виде разделенной запятой пары, состоящей из 'Simultaneous'
и любой false
или true
.
Если 'Simultaneous'
false
, затем predict
вычисляет неодновременные доверительные границы.
Если 'Simultaneous'
true
, predict
возвращает одновременные доверительные границы.
Пример: 'Simultaneous',true
ypred
— Предсказанные ответыПредсказанные ответы, возвращенные как вектор. Если 'Conditional'
аргумент пары "имя-значение" задан как true
, ypred
содержит предсказания для условных средних значений ответов, учитывая случайные эффекты. Условные предсказания включают вклады и от зафиксированных и от случайных эффектов. Крайние предсказания включают только вклады от фиксированных эффектов.
Вычислить крайние предсказания, predict
вычисляет условные предсказания, но заменяет нулевым вектором вместо эмпирических предикторов Бейеса (EBPs) случайных эффектов.
ypredCI
— Мудрые точкой доверительные интервалыМудрые точкой доверительные интервалы для ожидаемых значений, возвращенных как матрица 2D столбца. Первый столбец ypredCI
содержит нижнюю границу, и второй столбец содержит верхнюю границу. По умолчанию, ypredCI
содержит 95%-е неодновременные доверительные интервалы для предсказаний. Можно изменить доверительный уровень с помощью Alpha
аргумент пары "имя-значение", и делает их одновременным использованием Simultaneous
аргумент пары "имя-значение".
При подборе кривой использованию модели GLME fitglme
и одно из наибольшего правдоподобия соответствует методам ('Laplace'
или 'ApproximateLaplace'
), predict
вычисляет доверительные интервалы с помощью условной среднеквадратической ошибки предсказания условное выражение подхода (CMSEP) на предполагаемых параметрах ковариации и наблюдаемом ответе. В качестве альтернативы можно интерпретировать доверительные интервалы как аппроксимированное Байесово вероятное условное выражение интервалов на предполагаемых параметрах ковариации и наблюдаемом ответе.
При подборе кривой использованию модели GLME fitglme
и одна из псевдо вероятности соответствует методам ('MPL'
или 'REMPL'
), predict
основывает расчеты на подбиравшей линейной модели смешанных эффектов от итоговой псевдо итерации вероятности.
DF
— Степени свободыСтепени свободы, используемые в вычислении доверительных интервалов, возвращенных как вектор или скалярное значение.
Если 'Simultaneous'
false
, затем DF
вектор.
Если 'Simultaneous'
true
, затем DF
скалярное значение.
Загрузите выборочные данные.
load mfr
Эти симулированные данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:
Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждого пакета, в часах (time
)
Температура пакета, в градусах Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
B
, или C
) из химиката, используемого в пакете (supplier
)
Количество дефектов в пакете (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.
Подбирайте обобщенную линейную модель смешанных эффектов использование newprocess
, time_dev
, temp_dev
, и supplier
как предикторы фиксированных эффектов. Включайте термин случайных эффектов для точки пересечения, сгруппированной factory
, с учетом качественных различий, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects'
, таким образом, фиктивные переменные коэффициенты суммируют к 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона:
Это соответствует обобщенной линейной модели смешанных эффектов
где
количество дефектов, наблюдаемых в пакете, произведенном фабрикой во время пакета .
среднее количество дефектов, соответствующих фабрике (где ) во время пакета (где ).
, , и измерения для каждой переменной, которые соответствуют фабрике во время пакета . Например, указывает ли пакет, произведенный фабрикой во время пакета используемый новый процесс.
и фиктивные переменные, которые используют эффекты (сумма к нулю) кодирование, чтобы указать ли компания C
или B
, соответственно, предоставленный химикаты процесса для пакета производятся фабрикой во время пакета .
точка пересечения случайных эффектов для каждой фабрики это составляет специфичное для фабрики изменение по качеству.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Предскажите значения отклика в значениях первоначального проекта. Отобразите первые десять предсказаний наряду с наблюдаемыми значениями отклика.
ypred = predict(glme); [ypred(1:10),mfr.defects(1:10)]
ans = 10×2
4.9883 6.0000
5.9423 7.0000
5.1318 6.0000
5.6295 5.0000
5.3499 6.0000
5.2134 5.0000
4.6430 4.0000
4.5342 4.0000
5.3903 9.0000
4.6529 4.0000
Столбец 1 содержит предсказанные значения отклика в значениях первоначального проекта. Столбец 2 содержит наблюдаемые значения отклика.
Загрузите выборочные данные.
load mfr
Эти симулированные данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:
Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждого пакета, в часах (time
)
Температура пакета, в градусах Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
B
, или C
) из химиката, используемого в пакете (supplier
)
Количество дефектов в пакете (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.
Подбирайте обобщенную линейную модель смешанных эффектов использование newprocess
, time_dev
, temp_dev
, и supplier
как предикторы фиксированных эффектов. Включайте термин случайных эффектов для точки пересечения, сгруппированной factory
, с учетом качественных различий, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects'
, таким образом, фиктивные переменные коэффициенты суммируют к 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона:
Это соответствует обобщенной линейной модели смешанных эффектов
где
количество дефектов, наблюдаемых в пакете, произведенном фабрикой во время пакета .
среднее количество дефектов, соответствующих фабрике (где ) во время пакета (где ).
, , и измерения для каждой переменной, которые соответствуют фабрике во время пакета . Например, указывает ли пакет, произведенный фабрикой во время пакета используемый новый процесс.
и фиктивные переменные, которые используют эффекты (сумма к нулю) кодирование, чтобы указать ли компания C
или B
, соответственно, предоставленный химикаты процесса для пакета производятся фабрикой во время пакета .
точка пересечения случайных эффектов для каждой фабрики это составляет специфичное для фабрики изменение по качеству.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Предскажите значения отклика в значениях первоначального проекта.
ypred = predict(glme);
Составьте новую таблицу путем копирования первых 10 строк mfr
в tblnew
.
tblnew = mfr(1:10,:);
Первые 10 строк mfr
включайте данные, собранные от испытаний 1 - 5 для фабрик 1 и 2. Обе фабрики использовали старый процесс для всех их испытаний во время эксперимента, таким образом, newprocess = 0
для всех 10 наблюдений.
Измените значение newprocess
к 1
для наблюдений в tblnew
.
tblnew.newprocess = ones(height(tblnew),1);
Вычислите предсказанные значения отклика и неодновременные 99%-е доверительные интервалы с помощью tblnew
. Отобразите первые 10 строк ожидаемых значений на основе tblnew
, ожидаемые значения на основе mfr
, и наблюдаемые значения отклика.
[ypred_new,ypredCI] = predict(glme,tblnew,'Alpha',0.01);
[ypred_new,ypred(1:10),mfr.defects(1:10)]
ans = 10×3
3.4536 4.9883 6.0000
4.1142 5.9423 7.0000
3.5530 5.1318 6.0000
3.8976 5.6295 5.0000
3.7040 5.3499 6.0000
3.6095 5.2134 5.0000
3.2146 4.6430 4.0000
3.1393 4.5342 4.0000
3.7320 5.3903 9.0000
3.2214 4.6529 4.0000
Столбец 1 содержит предсказанные значения отклика на основе данных в tblnew
, где newprocess = 1
. Столбец 2 содержит предсказанные значения отклика на основе исходных данных в mfr
, где newprocess = 0
. Столбец 3 содержит наблюдаемые значения отклика в mfr
. На основе этих результатов, если все другие предикторы сохраняют свои исходные значения, предсказанное количество дефектов, кажется, меньше при использовании нового процесса.
Отобразите 99% доверительных интервалов для строк 1 - 10, соответствующих новым предсказанным значениям отклика.
ypredCI(1:10,1:2)
ans = 10×2
1.6983 7.0235
1.9191 8.8201
1.8735 6.7380
2.0149 7.5395
1.9034 7.2079
1.8918 6.8871
1.6776 6.1597
1.5404 6.3976
1.9574 7.1154
1.6892 6.1436
[1] Стенд, J.G., и Дж.П. Хоберт. “Стандартные погрешности Предсказания в Обобщенных линейных Смешанных Моделях”. Журнал американской Статистической Ассоциации, Издания 93, 1998, стр 262–272.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.