Класс: GeneralizedLinearMixedModel
Оценки случайных эффектов и связанной статистики
[
возвращает любой из вышеупомянутых выходных аргументов с помощью дополнительных опций, заданных одним или несколькими B
,BNames
,stats
]
= randomEffects(glme
,Name,Value
)Name,Value
парные аргументы. Например, можно задать уровень доверительного интервала или метод для вычисления аппроксимированных степеней свободы.
glme
— Обобщенная линейная модель смешанных эффектовGeneralizedLinearMixedModel
объектОбобщенная линейная модель смешанных эффектов в виде GeneralizedLinearMixedModel
объект. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel
.
Задайте дополнительные разделенные запятой пары Name,Value
аргументы. Name
имя аргумента и Value
соответствующее значение. Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN
.
'Alpha'
— Уровень значенияУровень значения в виде разделенной запятой пары, состоящей из 'Alpha'
и скалярное значение в области значений [0,1]. Для значения α, доверительный уровень является 100 × (1 – α) %.
Например, для 99% доверительных интервалов, можно задать доверительный уровень можно следующим образом.
Пример: 'Alpha',0.01
Типы данных: single
| double
'DFMethod'
— Метод для вычисления аппроксимированных степеней свободы'residual'
(значение по умолчанию) | 'none'
Метод для вычисления аппроксимированных степеней свободы в виде разделенной запятой пары, состоящей из 'DFMethod'
и одно из следующих.
Значение | Описание |
---|---|
'residual' | Значение степеней свободы принято постоянным и равно n – p, где n является количеством наблюдений, и p является количеством фиксированных эффектов. |
'none' | Степени свободы установлены в бесконечность. |
Пример: 'DFMethod','none'
B
— Предполагаемые эмпирические предикторы Бейеса для случайных эффектовПредполагаемые эмпирические предикторы Бейеса (EBPs) для случайных эффектов в обобщенной линейной модели glme
смешанных эффектов, возвращенный как вектор-столбец. EBPs в
B
аппроксимированы режимом эмпирического апостериорного распределения случайных эффектов, учитывая предполагаемые параметры ковариации и наблюдаемый ответ.
Предположим glme
имеет сгруппированные переменные R g1, g2..., gR, с уровнями m 1, m 2..., m R, соответственно. Также предположите q 1, q 2..., q R длины векторов случайных эффектов, которые сопоставлены с g1, g2..., gR, соответственно. Затем B
вектор-столбец длины q 1*m1 + q 2*m2 +... + q R *mR.
randomEffects
создает B
путем конкатенации эмпирических предикторов Бейеса векторов случайных эффектов, соответствующих каждому уровню каждой сгруппированной переменной как [g1level1; g1level2; ...; g1levelm1; g2level1; g2level2; ...; g2levelm2; ...; gRlevel1; gRlevel2; ...; gRlevelmR]'
.
BNames
— Имена коэффициентов случайных эффектовИмена коэффициентов случайных эффектов в B
, возвращенный как таблица.
stats
— Предполагаемые эмпирические предикторы Бейеса и связанная статистикаПредполагаемые эмпирические предикторы Бейеса (EBPs) и связанная статистика для случайных эффектов в обобщенной линейной модели glme
смешанных эффектов, возвращенный как таблица.
stats
ссорится для каждого из случайных эффектов и одного столбца для каждых из следующих статистических данных.
ColumnName | Описание |
---|---|
Group | Сгруппированная переменная сопоставлена со случайным эффектом |
Level | Уровень в сгруппированной переменной, соответствующей случайному эффекту |
Name | Имя коэффициента случайного эффекта |
Estimate | Эмпирический байесов предиктор (EBP) случайного эффекта |
SEPred | Квадратный корень из условной среднеквадратической ошибки предсказания (CMSEP), данный параметры ковариации и ответ |
tStat | t- для теста, что коэффициент случайных эффектов равен 0 |
DF | Предполагаемые степени свободы для t - статистическая величина |
pValue | p - значение для t - статистическая величина |
Lower | Нижний предел 95%-го доверительного интервала для коэффициента случайных эффектов |
Upper | Верхний предел 95%-го доверительного интервала для коэффициента случайных эффектов |
randomEffects
вычисляет доверительные интервалы с помощью условной среднеквадратической ошибки предсказания условное выражение подхода (CMSEP) на предполагаемых параметрах ковариации и наблюдаемом ответе. Альтернативная интерпретация доверительных интервалов - то, что они - аппроксимированное Байесово вероятное условное выражение интервалов на предполагаемых параметрах ковариации и наблюдаемом ответе.
При подборе кривой использованию модели GLME fitglme
и одна из псевдо вероятности соответствует методам ('MPL'
или 'REMPL'
), randomEffects
вычисляет доверительные интервалы и связанную статистику на основе подбиравшей линейной модели смешанных эффектов от итоговой псевдо итерации вероятности.
Загрузите выборочные данные.
load mfr
Эти симулированные данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:
Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждого пакета, в часах (time
)
Температура пакета, в градусах Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
B
, или C
) из химиката, используемого в пакете (supplier
)
Количество дефектов в пакете (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.
Подбирайте обобщенную линейную модель смешанных эффектов использование newprocess
, time_dev
, temp_dev
, и supplier
как предикторы фиксированных эффектов. Включайте термин случайных эффектов для точки пересечения, сгруппированной factory
, с учетом качественных различий, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects'
, таким образом, фиктивные переменные коэффициенты суммируют к 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной линейной модели смешанных эффектов
где
количество дефектов, наблюдаемых в пакете, произведенном фабрикой во время пакета .
среднее количество дефектов, соответствующих фабрике (где ) во время пакета (где ).
, , и измерения для каждой переменной, которые соответствуют фабрике во время пакета . Например, указывает ли пакет, произведенный фабрикой во время пакета используемый новый процесс.
и фиктивные переменные, которые используют эффекты (сумма к нулю) кодирование, чтобы указать ли компания C
или B
, соответственно, предоставленный химикаты процесса для пакета производятся фабрикой во время пакета .
точка пересечения случайных эффектов для каждой фабрики это составляет специфичное для фабрики изменение по качеству.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Вычислите и отобразите имена и ориентировочные стоимости эмпирических предикторов Бейеса (EBPs) для случайных эффектов.
[B,BNames] = randomEffects(glme)
B = 20×1
0.2913
0.1542
-0.2633
-0.4257
0.5453
-0.1069
0.3040
-0.1653
-0.1458
-0.0816
⋮
BNames=20×3 table
Group Level Name
___________ ______ _______________
{'factory'} {'1' } {'(Intercept)'}
{'factory'} {'2' } {'(Intercept)'}
{'factory'} {'3' } {'(Intercept)'}
{'factory'} {'4' } {'(Intercept)'}
{'factory'} {'5' } {'(Intercept)'}
{'factory'} {'6' } {'(Intercept)'}
{'factory'} {'7' } {'(Intercept)'}
{'factory'} {'8' } {'(Intercept)'}
{'factory'} {'9' } {'(Intercept)'}
{'factory'} {'10'} {'(Intercept)'}
{'factory'} {'11'} {'(Intercept)'}
{'factory'} {'12'} {'(Intercept)'}
{'factory'} {'13'} {'(Intercept)'}
{'factory'} {'14'} {'(Intercept)'}
{'factory'} {'15'} {'(Intercept)'}
{'factory'} {'16'} {'(Intercept)'}
⋮
Каждая строка B
содержит предполагаемый EPB для коэффициента случайных эффектов, названного в соответствующей строке Bnames
. Например, значение –0.2633 в строке 3 B
предполагаемый EPB для '(Intercept)'
для уровня '3'
из factory
.
Загрузите выборочные данные.
load mfr
Эти симулированные данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:
Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждого пакета, в часах (time
)
Температура пакета, в градусах Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
B
, или C
) из химиката, используемого в пакете (supplier
)
Количество дефектов в пакете (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.
Подбирайте обобщенную линейную модель смешанных эффектов использование newprocess
, time_dev
, temp_dev
, и supplier
как предикторы фиксированных эффектов. Включайте термин случайных эффектов для точки пересечения, сгруппированной factory
, с учетом качественных различий, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects'
, таким образом, фиктивные переменные коэффициенты суммируют к 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной линейной модели смешанных эффектов
где
количество дефектов, наблюдаемых в пакете, произведенном фабрикой во время пакета .
среднее количество дефектов, соответствующих фабрике (где ) во время пакета (где ).
, , и измерения для каждой переменной, которые соответствуют фабрике во время пакета . Например, указывает ли пакет, произведенный фабрикой во время пакета используемый новый процесс.
и фиктивные переменные, которые используют эффекты (сумма к нулю) кодирование, чтобы указать ли компания C
или B
, соответственно, предоставленный химикаты процесса для пакета производятся фабрикой во время пакета .
точка пересечения случайных эффектов для каждой фабрики это составляет специфичное для фабрики изменение по качеству.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',... 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Вычислите и отобразите 99% доверительных интервалов для коэффициентов случайных эффектов.
[B,BNames,stats] = randomEffects(glme,'Alpha',0.01);
stats
stats = Random effect coefficients: DFMethod = 'residual', Alpha = 0.01 Group Level Name Estimate SEPred {'factory'} {'1' } {'(Intercept)'} 0.29131 0.19163 {'factory'} {'2' } {'(Intercept)'} 0.15423 0.19216 {'factory'} {'3' } {'(Intercept)'} -0.26325 0.21249 {'factory'} {'4' } {'(Intercept)'} -0.42568 0.21667 {'factory'} {'5' } {'(Intercept)'} 0.5453 0.17963 {'factory'} {'6' } {'(Intercept)'} -0.10692 0.20133 {'factory'} {'7' } {'(Intercept)'} 0.30404 0.18397 {'factory'} {'8' } {'(Intercept)'} -0.16527 0.20505 {'factory'} {'9' } {'(Intercept)'} -0.14577 0.203 {'factory'} {'10'} {'(Intercept)'} -0.081632 0.20256 {'factory'} {'11'} {'(Intercept)'} 0.014529 0.21421 {'factory'} {'12'} {'(Intercept)'} 0.17706 0.20721 {'factory'} {'13'} {'(Intercept)'} 0.24872 0.20522 {'factory'} {'14'} {'(Intercept)'} 0.21145 0.20678 {'factory'} {'15'} {'(Intercept)'} 0.2777 0.20345 {'factory'} {'16'} {'(Intercept)'} -0.25175 0.22568 {'factory'} {'17'} {'(Intercept)'} -0.13507 0.22301 {'factory'} {'18'} {'(Intercept)'} -0.1627 0.22269 {'factory'} {'19'} {'(Intercept)'} -0.32083 0.23294 {'factory'} {'20'} {'(Intercept)'} 0.058418 0.21481 tStat DF pValue Lower Upper 1.5202 94 0.13182 -0.21251 0.79514 0.80259 94 0.42423 -0.351 0.65946 -1.2389 94 0.21846 -0.82191 0.29541 -1.9646 94 0.052408 -0.99534 0.14398 3.0356 94 0.0031051 0.073019 1.0176 -0.53105 94 0.59664 -0.63625 0.42241 1.6527 94 0.10173 -0.17964 0.78771 -0.80597 94 0.42229 -0.70438 0.37385 -0.71806 94 0.4745 -0.67949 0.38795 -0.403 94 0.68786 -0.61419 0.45093 0.067826 94 0.94607 -0.54866 0.57772 0.85446 94 0.39502 -0.36774 0.72185 1.212 94 0.22857 -0.29083 0.78827 1.0226 94 0.30913 -0.33221 0.75511 1.365 94 0.17552 -0.25719 0.81259 -1.1156 94 0.26746 -0.84509 0.34158 -0.60568 94 0.54619 -0.7214 0.45125 -0.73061 94 0.46684 -0.74817 0.42278 -1.3773 94 0.17168 -0.93325 0.29159 0.27195 94 0.78626 -0.50635 0.62319
Первые три столбца stats
содержите название группы, уровень и содействующее имя случайных эффектов. Столбец 4 содержит предполагаемый EBP коэффициента случайных эффектов. Последние два столбца stats
ниже
и Upper
, содержите нижние и верхние границы 99%-го доверительного интервала, соответственно. Например, для коэффициента для '(Intercept)'
для уровня 3
из factory
, предполагаемый EBP-0.26325, и 99%-й доверительный интервал [-0.82191,0.29541].
[1] Стенд, J.G., и Дж.П. Хоберт. “Стандартные погрешности Предсказания в Обобщенных линейных Смешанных Моделях”. Журнал американской Статистической Ассоциации, Издания 93, 1998, стр 262–272.
coefCI
| coefTest
| fixedEffects
| GeneralizedLinearMixedModel
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.