В этом примере показано, как использовать развернутый синус динамики аппарата, регулирующий пример готовых узлов, чтобы анализировать динамический руководящий ответ на регулирование входных параметров. А именно, можно исследовать частотную характеристику транспортного средства и поперечное ускорение, когда вы запускаете маневр с различными синусоидальными руководящими амплитудами волны.
Развернутый синус, регулирующий маневр, тестирует частотную характеристику транспортного средства на регулирование входных параметров. В тесте, драйвере:
Ускоряется, пока транспортное средство не врезается в целевую скорость.
Управляет синусоидальным входом руля.
Линейно увеличьте частоту синусоидальной волны.
Для получения дополнительной информации о примере готовых узлов, смотрите, что Развернутый Синус Регулирует Маневр.
helpersetupsss;
1. Откройте блок Swept Sine Reference Generator. По умолчанию маневр установлен этими параметрами:
Продольное скоростное заданное значение — 30 миль в час
Регулирование амплитуды — 90 градусов
Итоговая частота — 0,7 Гц
2. В подсистеме Визуализации откройте 3D Блок двигателя. По умолчанию 3D параметр Engine устанавливается на Отключенный. Для 3D требований платформы механизма визуализации и рекомендаций по аппаратным средствам, смотрите 3D Требования Engine Визуализации и Ограничения.
3. Запустите маневр с настройками по умолчанию. Когда симуляция запускается, просмотрите информацию о транспортном средстве.
mdl = 'SSSReferenceApplication';
sim(mdl);
### Starting serial model reference simulation build Warning: method not found. ### Successfully updated the model reference simulation target for: Driveline ### Successfully updated the model reference simulation target for: PassVeh14DOF ### Successfully updated the model reference simulation target for: SiMappedEngineV Build Summary Simulation targets built: Model Action Rebuild Reason ========================================================================================== Driveline Code generated and compiled Driveline_msf.mexw64 does not exist. PassVeh14DOF Code generated and compiled PassVeh14DOF_msf.mexw64 does not exist. SiMappedEngineV Code generated and compiled SiMappedEngineV_msf.mexw64 does not exist. 3 of 3 models built (0 models already up to date) Build duration: 0h 4m 2.207s
В окне Vehicle Position просмотрите транспортное средство продольное расстояние как функцию или боковое расстояние. Желтая линия является уровнем рыскания. Синяя линия является держащимся углом.
В подсистеме Визуализации откройте Уровень Рыскания и блок Steer Scope, чтобы отобразить уровень рыскания и держащийся угол по сравнению со временем.
Запустите приложение готовых узлов с тремя различными синусоидальными руководящими амплитудами волны.
1. В развернутом синусе, регулирующем модель SSSReferenceApplication примера готовых узлов, откройте блок Swept Sine Reference Generator. Держащаяся амплитуда, theta_hw параметры блоков устанавливает амплитуду. По умолчанию амплитуда составляет 90 градусов.
2. Включите логгирование сигнала для скорости, маршрута и сигналов ISO. Можно использовать редактор Simulink® или, альтернативно, эти команды MATLAB®. Сохраните модель.
Включите логгирование сигнала для Дорожного знака выходного порта Генератора Ссылки Изменения Маршрута.
mdl = 'SSSReferenceApplication'; open_system(mdl); ph=get_param('SSSReferenceApplication/Swept Sine Reference Generator','PortHandles'); set_param(ph.Outport(1),'DataLogging','on');
Включите логгирование сигнала для сигнала выходного порта блока Passenger Vehicle.
ph=get_param('SSSReferenceApplication/Passenger Vehicle','PortHandles'); set_param(ph.Outport(1),'DataLogging','on');
В подсистеме Визуализации включите логгирование сигнала для блока ISO.
set_param([mdl '/Visualization/ISO 15037-1:2006'],'Measurement','Enable');
3. Настройте держащийся амплитудный вектор, amp
, то, что вы хотите заняться расследованиями. Например, в командной строке, введите:
amp = [60, 90, 120]; numExperiments = length(amp);
4. Создайте массив входных параметров симуляции, которые устанавливают Развернутую Руководящую амплитуду параметров блоков Генератора Ссылки Синуса, theta_hw равный amp
.
for idx = numExperiments:-1:1 in(idx) = Simulink.SimulationInput(mdl); in(idx) = in(idx).setBlockParameter([mdl '/Swept Sine Reference Generator'],... 'theta_hw',num2str(amp(idx))); end
5. Сохраните модель и запустите симуляции. При наличии используйте параллельные вычисления.
save_system(mdl) tic; simout = parsim(in,'ShowSimulationManager','on'); toc;
[17-Dec-2020 15:45:52] Checking for availability of parallel pool... [17-Dec-2020 15:45:52] Starting Simulink on parallel workers... [17-Dec-2020 15:45:53] Loading project on parallel workers... [17-Dec-2020 15:45:53] Configuring simulation cache folder on parallel workers... [17-Dec-2020 15:45:53] Loading model on parallel workers... [17-Dec-2020 15:46:05] Running simulations... [17-Dec-2020 15:47:03] Completed 1 of 3 simulation runs [17-Dec-2020 15:47:04] Completed 2 of 3 simulation runs [17-Dec-2020 15:48:34] Completed 3 of 3 simulation runs [17-Dec-2020 15:48:35] Cleaning up parallel workers... Elapsed time is 174.675488 seconds.
6. После завершенных симуляций закройте окна Simulation Data Inspector.
Используйте Инспектора Данных моделирования, чтобы исследовать результаты. Можно использовать пользовательский интерфейс или, альтернативно, функции командной строки.
1. Откройте Инспектора Данных моделирования. На Панели инструментов Simulink, на вкладке Simulation, рассматриваемых Результатах, нажимают Data Inspector.
В Инспекторе Данных моделирования выберите Import.
В диалоговом окне Import очистите logsout
. Выберите simout(1)
, simout(2)
, и simout(3)
. Выберите Import.
Используйте Инспектора Данных моделирования, чтобы исследовать результаты.
2. В качестве альтернативы используйте эти команды MATLAB, чтобы отобразить данные на графике для каждого запуска. Например, используйте эти команды, чтобы построить боковое положение, угол руля и поперечное ускорение. Результаты похожи на эти графики, которые показывают результаты для каждого запуска.
for idx = 1:numExperiments % Create sdi run object simoutRun(idx)=Simulink.sdi.Run.create; simoutRun(idx).Name=['Amplitude = ', num2str(amp(idx))]; add(simoutRun(idx),'vars',simout(idx)); end sigcolor=[0 1 0;0 0 1;1 0 1]; for idx = 1:numExperiments % Extract the lateral acceleration, position, and steering ysignal(idx)=getSignalByIndex(simoutRun(idx),7); ysignal(idx).LineColor =sigcolor((idx),:); ssignal(idx)=getSignalByIndex(simoutRun(idx),255); ssignal(idx).LineColor =sigcolor((idx),:); asignal(idx)=getSignalByIndex(simoutRun(idx),263); asignal(idx).LineColor =sigcolor((idx),:); end Simulink.sdi.view Simulink.sdi.setSubPlotLayout(3,1); for idx = 1:numExperiments % Plot the lateral position, steering angle, and lateral acceleration plotOnSubPlot(ysignal(idx),1,1,true); plotOnSubPlot(ssignal(idx),2,1,true); plotOnSubPlot(asignal(idx),3,1,true); end
Результаты похожи на эти графики, которые указывают, что самое большое поперечное ускорение происходит, когда держащейся амплитудой является 120
градус.
Чтобы исследовать результаты далее, используйте эти команды, чтобы извлечь поперечное ускорение, регулируя угол и траекторию транспортного средства от simout
объект.
1. Извлеките поперечное ускорение и держащийся угол. Отобразите данные на графике. Результаты похожи на этот график.
figure for idx = 1:numExperiments % Extract Data log = get(simout(idx),'logsout'); sa=log.get('Steering-wheel angle').Values; ay=log.get('Lateral acceleration').Values; legend_labels{idx} = ['amplitude = ', num2str(amp(idx)), '^{\circ}']; % Plot steering angle vs. lateral acceleration plot(sa.Data,ay.Data) hold on end % Add labels to the plots legend(legend_labels, 'Location', 'best'); title('Lateral Acceleration') xlabel('Steering Angle [deg]') ylabel('Acceleration [m/s^2]') grid on
2. Извлеките путь к транспортному средству. Отобразите данные на графике. Результаты похожи на этот график.
figure for idx = 1:numExperiments % Extract Data log = get(simout(idx),'logsout'); x = log{1}.Values.Body.InertFrm.Cg.Disp.X.Data; y = log{1}.Values.Body.InertFrm.Cg.Disp.Y.Data; legend_labels{idx} = ['amplitude = ', num2str(amp(idx)), '^{\circ}']; % Plot vehicle location axis('equal') plot(y,x) hold on end % Add labels to the plots legend(legend_labels, 'Location', 'best'); title('Vehicle Path') xlabel('Y Position [m]') ylabel('X Position [m]') grid on
fft
| Simulink.SimulationInput
| Simulink.SimulationOutput