Транспонированный 3-D сверточный слой
Транспонированный 3-D сверточный слой увеличивает трехмерные карты признаков.
Этот слой иногда неверно известен как «деконволюционный» или «деконв» слой. Этот слой является транспонированием свертки и не выполняет деконволюцию.
Создание транспонированной свертки 3-D выходного слоя с помощью transposedConv3dLayer.
FilterSize - Высота, ширина и глубина фильтровВысота, ширина и глубина фильтров, заданных как вектор [h w d] трех положительных целых чисел, где h - высота, w - ширина, и d - глубина. FilterSize определяет размер локальных областей, к которым соединяются нейроны на входе.
При создании слоя можно указать FilterSize в качестве скаляра для использования одинаковых значений высоты, ширины и глубины.
Пример:
[5 5 5] задает фильтры с высотой, шириной и глубиной 5.
NumFilters - Количество фильтровЧисло фильтров, указанное как положительное целое число. Это число соответствует количеству нейронов в сверточном слое, которые соединяются с одной и той же областью на входе. Этот параметр определяет количество каналов (карты характеристик) на выходе сверточного уровня.
Пример:
96
Stride - Размер шага для проходного ввода[1 1 1] (по умолчанию) | вектор из трех положительных целых чиселРазмер шага для прохождения входного сигнала в трех измерениях, заданный как вектор [a b c] трех положительных целых чисел, где a - вертикальный размер шага, b - размер шага по горизонтали, и c - размер шага вдоль глубины. При создании слоя можно указать Stride в качестве скаляра для использования одинакового значения для размеров шагов во всех трех направлениях.
Пример:
[2 3 1] задает вертикальный размер шага 2, горизонтальный размер шага 3 и размер шага вдоль глубины 1.
CroppingMode - Метод определения размера обрезки'manual' (по умолчанию) | 'same'Метод определения размера обрезки, указанный как 'manual' или 'same'.
Программа автоматически устанавливает значение CroppingMode на основе 'Cropping' значение, задаваемое при создании слоя.
Если установить 'Cropping' в числовое значение, то программное обеспечение автоматически устанавливает CroppingMode свойства слоя для 'manual'.
Если установить 'Cropping' опция для 'same', то программное обеспечение автоматически устанавливает CroppingMode свойства слоя для 'same' и установить обрезку таким образом, чтобы выходной размер был равен inputSize .* Stride, где inputSize - высота, ширина и глубина входного слоя.
Для задания размера обрезки используйте 'Cropping' вариант transposedConv3dLayer.
CroppingSize - Уменьшение размера выпуска[0 0 0;0 0 0] (по умолчанию) | матрица неотрицательных целых чиселУменьшение размера вывода, указанное как матрица неотрицательных целых чисел [t l f; b r bk], t, l, f, b, r, bk являются суммами для обрезки сверху, слева, спереди, снизу, справа и сзади ввода, соответственно.
Чтобы задать размер обрезки вручную, используйте 'Cropping' вариант transposedConv2dLayer.
Пример:
[0 1 0 1 0 1]
NumChannels - Количество каналов для каждого фильтра'auto' (по умолчанию) | целое числоКоличество каналов для каждого фильтра, указанное 'auto' или целое число.
Этот параметр должен быть равен количеству каналов входа в этот сверточный уровень. Например, если вход является цветным изображением, то количество каналов для входа должно быть равно 3. Если число фильтров для сверточного уровня до текущего уровня равно 16, то количество каналов для этого уровня должно быть равно 16.
WeightsInitializer - Функция инициализации весов'glorot' (по умолчанию) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | дескриптор функцииФункция для инициализации весов, указанных как одно из следующих:
'glorot' - Инициализируйте веса с помощью инициализатора Glorot [1] (также известного как инициализатор Xavier). Инициализатор Glorot независимо отсчитывает из однородного распределения с нулевым средним и дисперсией 2/(numIn + numOut), где numIn = FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels и numOut = FilterSize(1)*FilterSize(2)*FilterSize(3)*NumFilters.
'he' - Инициализируйте веса с помощью инициализатора He [2]. Выборка инициализатора He из нормального распределения с нулевым средним и дисперсией 2/numIn, где numIn = FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels.
'narrow-normal' - Инициализация весов путем независимой выборки из нормального распределения с нулевым средним и стандартным отклонением 0,01.
'zeros' - Инициализация весов с нулями.
'ones' - Инициализируйте веса единицами.
Дескриптор функции - инициализация весов с помощью пользовательской функции. Если указан дескриптор функции, то функция должна иметь вид weights = func(sz), где sz - размер весов. Пример см. в разделе Определение пользовательской функции инициализации веса.
Слой инициализирует веса только в том случае, если Weights пустое свойство.
Типы данных: char | string | function_handle
BiasInitializer - Функция инициализации смещения'zeros' (по умолчанию) | 'narrow-normal' | 'ones' | дескриптор функцииФункция инициализации смещения, указанная как одно из следующих:
'zeros' - Инициализируйте смещение нулями.
'ones' - Инициализировать смещение с помощью таковых.
'narrow-normal' - Инициализировать смещение путем независимой выборки из нормального распределения с нулевым средним и стандартным отклонением 0,01.
Дескриптор функции - инициализация смещения с помощью пользовательской функции. Если указан дескриптор функции, то функция должна иметь вид bias = func(sz), где sz - размер смещения.
Уровень инициализирует смещение только в том случае, если Bias пустое свойство.
Типы данных: char | string | function_handle
Weights - Веса слоев[] (по умолчанию) | числовой массивВеса слоев для транспонированного сверточного слоя, заданного как числовой массив.
Веса слоев являются обучаемыми параметрами. Можно указать начальное значение для весов непосредственно с помощью Weights свойство слоя. При обучении сети, если Weights свойство слоя является непустым, то trainNetwork использует Weights свойство в качестве начального значения. Если Weights свойство пустое, затем trainNetwork использует инициализатор, указанный WeightsInitializer свойство слоя.
Во время обучения, Weights является FilterSize(1)около-FilterSize(2)около-FilterSize(3)около-NumFiltersоколо-NumChannels массив.
Типы данных: single | double
Bias - Смещения слоев[] (по умолчанию) | числовой массивСмещения слоев для транспонированного сверточного слоя, заданные как числовой массив.
Смещения слоя - это обучаемые параметры. При обучении сети, если Bias является непустым, то trainNetwork использует Bias свойство в качестве начального значения. Если Bias пуст, затем trainNetwork использует инициализатор, указанный BiasInitializer.
Во время обучения, Bias является 1-на-1-на-1-на-NumFilters массив.
Типы данных: single | double
WeightLearnRateFactor - Коэффициент коэффициента усвоения весовКоэффициент скорости обучения для весов, заданный как неотрицательный скаляр.
Программное обеспечение умножает этот коэффициент на глобальную скорость обучения, чтобы определить скорость обучения для весов на этом уровне. Например, если WeightLearnRateFactor 2, то скорость обучения для весов в этом слое вдвое превышает текущую глобальную скорость обучения. Программа определяет глобальную скорость обучения на основе настроек, указанных в trainingOptions функция.
Пример:
2
BiasLearnRateFactor - Коэффициент успеваемости для предубежденийКоэффициент скорости обучения для смещений, заданный как неотрицательный скаляр.
Программное обеспечение умножает этот коэффициент на глобальную скорость обучения, чтобы определить скорость обучения для отклонений на этом уровне. Например, если BiasLearnRateFactor 2, тогда скорость обучения для отклонений в слое в два раза превышает текущую глобальную скорость обучения. Программа определяет глобальную скорость обучения на основе настроек, указанных в trainingOptions функция.
Пример:
2
WeightL2Factor - коэффициент регуляризации L2 для весовL2 коэффициент регуляризации для весов, определяемый как неотрицательный скаляр.
Программное обеспечение умножает этот коэффициент на глобальный коэффициент регуляризации L2, чтобы определить L2 регуляризацию для весов в этом слое. Например, если WeightL2Factor 2, то L2 регуляризация для весов в этом слое вдвое больше глобального коэффициента регуляризации L2. Можно указать глобальный коэффициент регуляризации L2 с помощью trainingOptions функция.
Пример:
2
BiasL2Factor - коэффициент регуляризации L2 для отклоненийL2 коэффициент регуляризации для смещений, определяемый как неотрицательный скаляр.
Программное обеспечение умножает этот коэффициент на глобальный коэффициент регуляризации L2, чтобы определить L2 регуляризацию для смещений на этом уровне. Например, если BiasL2Factor 2, то L2 регуляризация для смещений в этом слое вдвое превышает глобальный коэффициент регуляризации L2. Можно указать глобальный коэффициент регуляризации L2 с помощью trainingOptions функция.
Пример:
2
Name - Имя слоя'' (по умолчанию) | символьный вектор | строковый скаляр
Имя слоя, указанное как символьный вектор или строковый скаляр. Чтобы включить слой в график слоев, необходимо указать непустое уникальное имя слоя. Если вы обучаете последовательную сеть с уровнем и Name имеет значение ''затем программа автоматически присваивает имя слою во время обучения.
Типы данных: char | string
NumInputs - Количество входовКоличество входов слоя. Этот слой принимает только один вход.
Типы данных: double
InputNames - Входные имена{'in'} (по умолчанию)Входные имена слоя. Этот слой принимает только один вход.
Типы данных: cell
NumOutputs - Количество выходовКоличество выходов уровня. Этот уровень имеет только один выход.
Типы данных: double
OutputNames - Имена выходных данных{'out'} (по умолчанию)Выходные имена слоя. Этот уровень имеет только один выход.
Типы данных: cell
Создайте транспонированный 3-D сверточный слой с 32 фильтрами, каждый из которых имеет высоту, ширину и глубину 11. Используйте шаг 4 в горизонтальном и вертикальном направлениях и 2 по глубине.
layer = transposedConv3dLayer(11,32,'Stride',[4 4 2])layer =
TransposedConvolution3DLayer with properties:
Name: ''
Hyperparameters
FilterSize: [11 11 11]
NumChannels: 'auto'
NumFilters: 32
Stride: [4 4 2]
CroppingMode: 'manual'
CroppingSize: [2x3 double]
Learnable Parameters
Weights: []
Bias: []
Show all properties
[1] Глорот, Ксавье и Йошуа Бенгио. «Понимание сложности обучения глубоким нейронным сетям». Материалы тринадцатой Международной конференции по искусственному интеллекту и статистике, 249-356. Сардиния, Италия: AISTATS, 2010.
[2] Хэ, Каймин, Сянъу Чжан, Шаоцин Жэнь и Цзянь Сунь. «Углубляясь в выпрямители: превосходя показатели на уровне человека по классификации ImageNet». В трудах Международной конференции IEEE 2015 по компьютерному зрению, 1026-1034. Вашингтон, округ Колумбия: Общество компьютерного зрения IEEE, 2015.
averagePooling3dLayer | convolution3dLayer | maxPooling3dLayer | transposedConv2dLayer | transposedConv3dLayer
Имеется измененная версия этого примера. Открыть этот пример с помощью изменений?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.