exponenta event banner

convert2daily

Агрегирование данных по расписанию на ежедневную периодичность

Описание

пример

TT2 = convert2daily(TT1) агрегирует данные (например, высокочастотные и внутрисуточные) с ежедневной периодичностью.

пример

TT2 = convert2daily(___,Name,Value) указывает параметры, использующие один или несколько необязательных аргументов пары имя-значение в дополнение к входному аргументу в предыдущем синтаксисе.

Примеры

свернуть все

Применение отдельных методов агрегации к связанным переменным в timetable при сохранении согласованности между агрегированными результатами для ежедневной периодичности.

Загрузить расписание (TT) смоделированных данных цены акций и соответствующих логарифмических доходностей. Данные, хранящиеся в TT фиксируется в разное время в течение всего дня на Нью-Йоркской фондовой бирже (NYSE) рабочих дней с 1 января 2018 года по 31 декабря 2020 года. Расписание TT также включает осведомленность о бизнес-календаре NYSE. Если ваше расписание не учитывает нерабочие дни (выходные, праздничные дни и закрытие рынка), добавьте информацию о бизнес-календаре с помощью addBusinessCalendar во-первых.

load('SimulatedStock.mat','TT');
head(TT)
ans=8×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________

    02-Jan-2018 11:52:11    100.71     0.0070749
    02-Jan-2018 13:23:09    103.11      0.023551
    02-Jan-2018 14:45:30    100.24     -0.028229
    02-Jan-2018 15:30:48    101.37       0.01121
    03-Jan-2018 10:02:21    101.81     0.0043311
    03-Jan-2018 11:22:37    100.17      -0.01624
    03-Jan-2018 14:45:20     99.66    -0.0051043
    03-Jan-2018 14:55:39    100.12     0.0046051

Агрегированные цены и логарифмический возврат к ежедневной периодичности. Для поддержания согласованности между ценами и доходностью для любого данного торгового дня агрегируйте цены, сообщая последнюю зарегистрированную цену с помощью "lastvalue" и суммировать возвращаемые значения путем суммирования всех логарифмических возвращаемых значений с помощью "sum".

tt = convert2daily(TT,'Aggregation',["lastvalue" "sum"]);
head(tt)
ans=8×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    02-Jan-2018    101.37     0.013607 
    03-Jan-2018    100.12    -0.012408 
    04-Jan-2018    106.76     0.064214 
    05-Jan-2018    112.78     0.054856 
    08-Jan-2018    119.07     0.054273 
    09-Jan-2018    119.46      0.00327 
    10-Jan-2018    124.44     0.040842 
    11-Jan-2018    125.63    0.0095174 

Для проверки согласованности изучите графики ввода и вывода на 2 и 3 января 2018 года.

TT(1:8,:)  % Input data for 02-Jan-2018 and 03-Jan-2018
ans=8×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________

    02-Jan-2018 11:52:11    100.71     0.0070749
    02-Jan-2018 13:23:09    103.11      0.023551
    02-Jan-2018 14:45:30    100.24     -0.028229
    02-Jan-2018 15:30:48    101.37       0.01121
    03-Jan-2018 10:02:21    101.81     0.0043311
    03-Jan-2018 11:22:37    100.17      -0.01624
    03-Jan-2018 14:45:20     99.66    -0.0051043
    03-Jan-2018 14:55:39    100.12     0.0046051

tt(1:2,:)  % Return aggregated results
ans=2×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________

    02-Jan-2018    101.37     0.013607 
    03-Jan-2018    100.12    -0.012408 

Для каждого рабочего дня в TTобратите внимание, что итоговая агрегированная цена является последней ценой дня и что агрегированная доходность является суммой всех логарифмических доходностей. Кроме того, агрегированные доходности согласуются с агрегированными ценами.

Например, агрегированная доходность за 3 января 2018 года, составляет -0.012408, который представляет собой логарифмическую доходность, связанную с последними ценами, зафиксированными 2 и 3 января 2018 года (то есть -0.012408 = log(100.12) - log(101.37)).

Даты агрегированных результатов - это целые даты, которые указывают даты, для которых сообщаются агрегированные результаты.

Входные аргументы

свернуть все

Данные для агрегирования с ежедневной периодичностью, указанной в расписании.

Примечание

NaNs указывает на отсутствие значений, метки времени должны быть в порядке возрастания или убывания.

По умолчанию все дни являются рабочими днями. Если ваше расписание не учитывает нерабочие дни (выходные, праздничные дни и закрытие рынка), добавьте информацию о бизнес-календаре с помощью addBusinessCalendar во-первых. Например, следующая команда добавляет логику бизнес-календаря для включения только рабочих дней NYSE.

TT = addBusinessCalendar(TT);

Типы данных: timetable

Аргументы пары «имя-значение»

Укажите дополнительные пары, разделенные запятыми Name,Value аргументы. Name является именем аргумента и Value - соответствующее значение. Name должен отображаться внутри кавычек. Можно указать несколько аргументов пары имен и значений в любом порядке как Name1,Value1,...,NameN,ValueN.

Пример: TT2 = convert2daily(TT1,'Aggregation',["lastvalue" "sum"])

Метод агрегирования для TT1 данные для внутрисуточной агрегации, указанные как пара, разделенная запятыми, состоящая из 'Aggregation' и символьный вектор, строка или дескриптор функции, примененный ко всем временным рядам в TT1, или вектор ячейки символьных векторов, строковый вектор или вектор ячейки функции обрабатывает ту же длину, что и число переменных в TT1.

Методы агрегирования определяют способ агрегирования данных в течение рабочих дней с периодичностью внутри дня. Доступные методы агрегирования:

  • 'sum' - Суммировать значения в каждый день.

  • 'mean' - Вычислите среднее значение значений за каждый день.

  • 'prod' - вычислять произведение значений в каждый день.

  • 'min' - Вычислите минимум значений в каждый день.

  • 'max' - Рассчитайте максимум значений за каждый день.

  • 'firstvalue' - использовать первое значение в каждый день.

  • 'lastvalue' - использовать последнее значение в каждом дне.

Все перечисленные выше методы пропускают отсутствующие данные (NaNs) в расчетах прямой агрегации. Однако в ситуациях, когда отсутствующие значения появляются в первой строке TT1, отсутствующие значения также могут отображаться в агрегированных результатах TT2.

Кроме того, в качестве дескрипторов функций можно указать методы агрегации. Чтобы включить отсутствующие данные, укажите функции в качестве дескрипторов функций, которые включают отсутствующие данные при агрегировании данных. Функции агрегации должны принимать базовые данные, сохраненные в TT1 и возвращает выходной сигнал, который является скалярным вектором или вектором строки и должен принимать пустые входные данные. Каждая функция агрегации применяется к соответствующей переменной и вызывается по одной. Каждая переменная должна содержать либо один числовой вектор, либо числовую матрицу. Например, рассмотрим ежедневное расписание, представляющее TT1 с тремя переменными.

              Time             AAA       BBB            CCC       
      ____________________    ______    ______    ________________
      01-Jan-2018 09:45:47    100.00    200.00    300.00    400.00
      01-Jan-2018 12:48:09    100.03    200.06    300.09    400.12
      02-Jan-2018 10:27:32    100.07    200.14    300.21    400.28
      02-Jan-2018 12:46:09    100.08    200.16    300.24    400.32
      02-Jan-2018 14:14:13    100.25    200.50    300.75    401.00
      02-Jan-2018 15:52:31    100.19    200.38    300.57    400.76
      03-Jan-2018 09:47:11    100.54    201.08    301.62    402.16
      03-Jan-2018 11:24:23    100.59    201.18    301.77    402.36
      03-Jan-2018 14:41:17    101.40    202.80    304.20    405.60
      03-Jan-2018 16:00:00    101.94    203.88    305.82    407.76
      04-Jan-2018 09:55:51    102.53    205.06    307.59    410.12
      04-Jan-2018 10:07:12    103.35    206.70    310.05    413.40
      04-Jan-2018 14:26:23    103.40    206.80    310.20    413.60
      05-Jan-2018 13:13:12    103.91    207.82    311.73    415.64
      05-Jan-2018 14:57:53    103.89    207.78    311.67    415.56

Соответствующие ежедневные результаты по умолчанию, представляющие TT2 (где 'lastvalue' сообщается для каждого дня) являются следующими.

        Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      01-Jan-2018    100.03    200.06    300.09    400.12
      02-Jan-2018    100.19    200.38    300.57    400.76
      03-Jan-2018    101.94    203.88    305.82    407.76
      04-Jan-2018    103.40    206.80    310.20    413.60
      05-Jan-2018    103.89    207.78    311.67    415.56

Типы данных: char | string | cell | function_handle

Выходные аргументы

свернуть все

Ежедневные данные, возвращаемые в виде расписания. Функция возвращает NaNs для переменных в TT2 для рабочих дней, когда данные для этих переменных не записаны в TT1. Если TT1 находится в порядке возрастания, так же TT2, и если TT1 находится в порядке убывания, так же TT2.

Первая дата в TT2 является первой рабочей датой в или после первой даты в TT1. Последняя дата в TT2 является последней рабочей датой в или перед последней датой в TT1.

Представлен в R2021a