exponenta event banner

kfoldEdge

Край классификации для перекрестно проверенной модели ECOC ядра

Описание

пример

edge = kfoldEdge(CVMdl) возвращает границу классификации, полученную перекрестно проверенной моделью ECOC ядра (ClassificationPartitionedKernelECOC) CVMdl. Для каждого раза, kfoldEdge вычисляет край классификации для проверочных наблюдений с использованием модели, обученной тренировочным наблюдениям.

edge = kfoldEdge(CVMdl,Name,Value) возвращает край классификации с дополнительными параметрами, заданными одним или несколькими аргументами пары имя-значение. Например, укажите количество складок, схему декодирования или уровень детализации.

Примеры

свернуть все

Загрузите набор данных радужки Фишера. X содержит измерения цветов, и Y содержит названия видов цветов.

load fisheriris
X = meas;
Y = species;

Перекрестная проверка модели ECOC, состоящей из двоичных учеников ядра.

CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')
CVMdl = 
  ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
         ScoreTransform: 'none'


  Properties, Methods

CVMdl является ClassificationPartitionedKernelECOC модель. По умолчанию программное обеспечение реализует 10-кратную перекрестную проверку. Чтобы указать другое количество сгибов, используйте 'KFold' аргумент пары имя-значение вместо 'Crossval'.

Оцените перекрестно проверенные границы классификации.

edge = kfoldEdge(CVMdl)
edge = 0.4145

Кроме того, можно получить кромки по складке, указав пару имя-значение. 'Mode','individual' в kfoldEdge.

Выбор элемента выполняется путем сравнения k-образных кромок из нескольких моделей. Исходя исключительно из этого критерия, классификатор с наибольшим ребром является лучшим классификатором.

Загрузите набор данных радужки Фишера. X содержит измерения цветов, и Y содержит названия видов цветов.

load fisheriris
X = meas;
Y = species;

Случайным образом выберите половину переменных предиктора.

rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Перекрестная проверка двух моделей ECOC, состоящих из моделей классификации ядра: одна использует все предикторы, а другая - половину предикторов.

CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on');
PCVMdl = fitcecoc(X(:,idxPart),Y,'Learners','kernel','CrossVal','on');

CVMdl и PCVMdl являются ClassificationPartitionedKernelECOC модели. По умолчанию программное обеспечение реализует 10-кратную перекрестную проверку. Чтобы указать другое количество сгибов, используйте 'KFold' аргумент пары имя-значение вместо 'Crossval'.

Оцените k-кратное ребро для каждого классификатора.

fullEdge = kfoldEdge(CVMdl)
fullEdge = 0.4092
partEdge = kfoldEdge(PCVMdl)
partEdge = 0.4161

На основании k-кратных рёбер два классификатора сопоставимы.

Входные аргументы

свернуть все

Перекрестно проверенная модель ECOC ядра, указанная как ClassificationPartitionedKernelECOC модель. Можно создать ClassificationPartitionedKernelECOC модель путем обучения модели ECOC с использованием fitcecoc и указание следующих аргументов пары имя-значение:

  • 'Learners'- Установите значение в 'kernel', объект шаблона, возвращенный templateKernelили массив ячеек таких объектов шаблона.

  • Один из аргументов 'CrossVal', 'CVPartition', 'Holdout', 'KFold', или 'Leaveout'.

Аргументы пары «имя-значение»

Укажите дополнительные пары, разделенные запятыми Name,Value аргументы. Name является именем аргумента и Value - соответствующее значение. Name должен отображаться внутри кавычек. Можно указать несколько аргументов пары имен и значений в любом порядке как Name1,Value1,...,NameN,ValueN.

Пример: kfoldEdge(CVMdl,'BinaryLoss','hinge') определяет 'hinge' в качестве двоичной функции потери учащегося.

Двоичная функция потери ученика, заданная как разделенная запятыми пара, состоящая из 'BinaryLoss' и встроенное имя или дескриптор функции потери.

  • Эта таблица содержит имена и описания встроенных функций, где yj - метка класса для конкретного двоичного ученика (в наборе {-1,1,0}), sj - оценка для наблюдения j, а g (yj, sj) - формула двоичных потерь.

    СтоимостьОписаниеДомен оценкиg (yj, sj)
    'binodeviance'Биномиальное отклонение(–∞,∞)журнал [1 + exp (-2yjsj) ]/[ 2log (2)]
    'exponential'Показательный(–∞,∞)exp (-yjsj )/2
    'hamming'Хэмминг[0,1] или (- ∞,∞)[1 - знак (yjsj) ]/2
    'hinge'Стержень(–∞,∞)max (0,1 - yjsj )/2
    'linear'Линейный(–∞,∞)(1 - yjsj )/2
    'logit'Логистический(–∞,∞)log [1 + exp (-yjsj) ]/[ 2log (2)]
    'quadratic'Квадратный[0,1][1-yj (2sj-1)] 2/2

    Программное обеспечение нормализует двоичные потери так, что потери составляют 0,5, когда yj = 0. Кроме того, программное обеспечение вычисляет средние двоичные потери для каждого класса.

  • Например, для пользовательской двоичной функции потери: customFunction, укажите его функциональный дескриптор 'BinaryLoss',@customFunction.

    customFunction имеет следующую форму:

    bLoss = customFunction(M,s)
    где:

    • M - матрица кодирования K-by-L, сохраненная в Mdl.CodingMatrix.

    • s - вектор 1-by-L строк классификационных баллов.

    • bLoss - потеря классификации. Этот скаляр агрегирует двоичные потери для каждого учащегося в конкретном классе. Например, можно использовать среднюю двоичную потерю для суммирования потерь по учащимся для каждого класса.

    • K - количество классов.

    • L - количество двоичных учеников.

По умолчанию, если все двоичные ученики являются моделями классификации ядра с использованием SVM, то BinaryLoss является 'hinge'. Если все двоичные ученики являются моделями классификации ядра с использованием логистической регрессии, то BinaryLoss является 'quadratic'.

Пример: 'BinaryLoss','binodeviance'

Типы данных: char | string | function_handle

Схема декодирования, которая агрегирует двоичные потери, заданная как разделенная запятыми пара, состоящая из 'Decoding' и 'lossweighted' или 'lossbased'. Дополнительные сведения см. в разделе Потери двоичного кода.

Пример: 'Decoding','lossbased'

Индексы складки для прогнозирования, указанные как пара, разделенная запятыми, состоящая из 'Folds' и числовой вектор положительных целых чисел. Элементы Folds должно находиться в диапазоне от 1 кому CVMdl.KFold.

Программное обеспечение использует только складки, указанные в Folds для прогнозирования.

Пример: 'Folds',[1 4 10]

Типы данных: single | double

Уровень агрегации для вывода, указанный как пара, разделенная запятыми, состоящая из 'Mode' и 'average' или 'individual'.

В этой таблице описываются значения.

СтоимостьОписание
'average'Вывод является скалярным средним по всем складкам.
'individual'Выходной сигнал представляет собой вектор длины k, содержащий одно значение на единицу, где k - количество сгибов.

Пример: 'Mode','individual'

Опции оценки, указанные как пара, разделенная запятыми, состоящая из 'Options' и массив структуры, возвращенный statset.

Для вызова параллельных вычислений:

  • Вам нужна лицензия Parallel Computing Toolbox™.

  • Определить 'Options',statset('UseParallel',true).

Уровень детализации, указанный как разделенная запятыми пара, состоящая из 'Verbose' и 0 или 1. Verbose управляет количеством диагностических сообщений, отображаемых программой в окне команд.

Если Verbose является 0, то программное обеспечение не отображает диагностические сообщения. В противном случае программа отображает диагностические сообщения.

Пример: 'Verbose',1

Типы данных: single | double

Выходные аргументы

свернуть все

Край классификации, возвращаемый как числовой скалярный или числовой вектор столбца.

Если Mode является 'average', то edge - средний край классификации по всем складкам. В противном случае edge является вектором числового столбца k-by-1, содержащим классификационное ребро для каждой складки, где k - количество складок.

Подробнее

свернуть все

Край классификации

Край классификации - это средневзвешенное значение полей классификации.

Один из способов выбора из нескольких классификаторов, например, выбор элемента, - выбор классификатора, который дает наибольший край.

Маржа классификации

Запас классификации для каждого наблюдения представляет собой разницу между отрицательными потерями для истинного класса и максимальными отрицательными потерями среди ложных классов. Если поля находятся в одной шкале, то они служат мерой достоверности классификации. Среди нескольких классификаторов лучше те, которые дают большую маржу.

Двоичные потери

Двоичная потеря - это функция класса и оценки классификации, которая определяет, насколько хорошо двоичный ученик классифицирует наблюдение в классе.

Предположим, что:

  • mkj - элемент (k, j) матрицы M дизайна кодирования (то есть код, соответствующий классу k двоичного учащегося j).

  • sj - оценка двоичного ученика j для наблюдения.

  • g - функция двоичных потерь.

  • k ^ - прогнозируемый класс для наблюдения.

При декодировании на основе потерь [Escalera et al.] класс, производящий минимальную сумму двоичных потерь над двоичными учениками, определяет прогнозируемый класс наблюдения, то есть

k^=argmink∑j=1L'mkj'g (mkj, sj).

При декодировании со взвешенными потерями [Escalera et al.] класс, производящий минимальное среднее двоичных потерь по двоичным ученикам, определяет прогнозируемый класс наблюдения, то есть

k^=argmink∑j=1L'mkj'g (mkj, sj) ∑j=1L'mkj|.

Allwein et al. предполагают, что взвешенное по потерям декодирование улучшает точность классификации, сохраняя значения потерь для всех классов в одном динамическом диапазоне.

Эта таблица суммирует поддерживаемые функции потерь, где yj - метка класса для конкретного двоичного ученика (в наборе {-1,1,0}), sj - оценка для наблюдения j, и g (yj, sj).

СтоимостьОписаниеДомен оценкиg (yj, sj)
'binodeviance'Биномиальное отклонение(–∞,∞)журнал [1 + exp (-2yjsj) ]/[ 2log (2)]
'exponential'Показательный(–∞,∞)exp (-yjsj )/2
'hamming'Хэмминг[0,1] или (- ∞,∞)[1 - знак (yjsj) ]/2
'hinge'Стержень(–∞,∞)max (0,1 - yjsj )/2
'linear'Линейный(–∞,∞)(1 - yjsj )/2
'logit'Логистический(–∞,∞)log [1 + exp (-yjsj) ]/[ 2log (2)]
'quadratic'Квадратный[0,1][1-yj (2sj-1)] 2/2

Программное обеспечение нормализует двоичные потери так, что потери составляют 0,5, когда yj = 0, и агрегирует, используя среднее значение двоичных учеников [Allwein et al.].

Не путайте бинарную потерю с общей классификационной потерей (указанной 'LossFun' аргумент пары имя-значение loss и predict объектные функции), который измеряет, насколько хорошо классификатор ECOC работает в целом.

Ссылки

[1] Allwein, E., R. Schapire и Y. Singer. «Сокращение мультиклассов до двоичных: унифицирующий подход к classifiers маржи». Журнал исследований машинного обучения. Том 1, 2000, стр. 113-141.

[2] Эскалера, С., О. Пужоль и П. Радева. «Процесс декодирования в выходных кодах с тройной коррекцией ошибок». Транзакции IEEE по анализу шаблонов и машинному интеллекту. Том 32, выпуск 7, 2010, стр. 120-134.

[3] Эскалера, С., О. Пужоль и П. Радева. «Разделяемость троичных кодов для разреженных конструкций выходных кодов с исправлением ошибок». Повторная запись шаблона. Том 30, выпуск 3, 2009, стр. 285-297.

Представлен в R2018b