Этот пример показывает, как вычислить стандартные ошибки для среднего и ковариации неполных данных за пять лет ежедневных общих данных о возврате для 12 запасов компьютерных технологий с шестью аппаратными и шестью программными компаниями
Период времени для этих данных простирается с 19 апреля 2000 года до 18 апреля 2005 года. Шестой акции в Assets - Google (GOOG), которая начала торговаться 19 августа 2004 года. Так, все возвраты до 20 августа 2004 года отсутствуют и представлены как NaN
s. Также у Amazon (AMZN) было несколько дней с отсутствующими значениями, рассеянными в течение последних пяти лет.
ECMMean = 12×1
0.0008
0.0008
-0.0005
0.0002
0.0011
0.0038
-0.0003
-0.0000
-0.0003
-0.0000
⋮
ECMCovar = 12×12
0.0012 0.0005 0.0006 0.0005 0.0005 0.0003 0.0005 0.0003 0.0006 0.0003 0.0005 0.0006
0.0005 0.0024 0.0007 0.0006 0.0010 0.0004 0.0005 0.0003 0.0006 0.0004 0.0006 0.0012
0.0006 0.0007 0.0013 0.0007 0.0007 0.0003 0.0006 0.0004 0.0008 0.0005 0.0008 0.0008
0.0005 0.0006 0.0007 0.0009 0.0006 0.0002 0.0005 0.0003 0.0007 0.0004 0.0005 0.0007
0.0005 0.0010 0.0007 0.0006 0.0016 0.0006 0.0005 0.0003 0.0006 0.0004 0.0007 0.0011
0.0003 0.0004 0.0003 0.0002 0.0006 0.0022 0.0001 0.0002 0.0002 0.0001 0.0003 0.0016
0.0005 0.0005 0.0006 0.0005 0.0005 0.0001 0.0009 0.0003 0.0005 0.0004 0.0005 0.0006
0.0003 0.0003 0.0004 0.0003 0.0003 0.0002 0.0003 0.0005 0.0004 0.0003 0.0004 0.0004
0.0006 0.0006 0.0008 0.0007 0.0006 0.0002 0.0005 0.0004 0.0011 0.0005 0.0007 0.0007
0.0003 0.0004 0.0005 0.0004 0.0004 0.0001 0.0004 0.0003 0.0005 0.0006 0.0004 0.0005
⋮
Чтобы оценить влияние ошибки расчета и, в частности, эффект недостающих данных, используйте ecmnstd
для вычисления стандартных ошибок. Хотя можно оценить стандартные ошибки как для среднего, так и для ковариационного, стандартные ошибки только для средних оценок обычно являются основными интересующими количествами.
StdMeanF = 12×1
0.0010
0.0014
0.0010
0.0009
0.0011
0.0013
0.0009
0.0006
0.0009
0.0007
⋮
Вычислите стандартные ошибки, которые используют сгенерированную данными матрицу Гессиана (которая учитывает возможную потерю информации из-за недостающих данных) с помощью опции 'hessian'
.
StdMeanH = 12×1
0.0010
0.0014
0.0010
0.0009
0.0011
0.0021
0.0009
0.0006
0.0009
0.0007
⋮
В различие стандартных ошибок показано увеличение неопределенности оценки ожидаемых возвратов активов из-за недостающих данных. Чтобы просмотреть различия:
Assets = 1x12 cell
Columns 1 through 6
{'AAPL'} {'AMZN'} {'CSCO'} {'DELL'} {'EBAY'} {'GOOG'}
Columns 7 through 12
{'HPQ'} {'IBM'} {'INTC'} {'MSFT'} {'ORCL'} {'YHOO'}
ans = 1×12
0.0010 0.0014 0.0010 0.0009 0.0011 0.0021 0.0009 0.0006 0.0009 0.0007 0.0010 0.0012
ans = 1×12
0.0010 0.0014 0.0010 0.0009 0.0011 0.0013 0.0009 0.0006 0.0009 0.0007 0.0010 0.0012
ans = 1×12
10-3 ×
-0.0000 0.0021 -0.0000 -0.0000 -0.0000 0.7742 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Два актива с отсутствующими данными, AMZN и GOOG, являются единственными активами, которые имеют различия из-за недостающей информации.