cordicangle

Основанный на CORDIC угол фазы

Синтаксис

theta = cordicangle(c)
theta = cordicangle(c,niters)

Описание

theta = cordicangle(c) возвращает углы фазы в радианах матрицы c, который содержит сложные элементы.

theta = cordicangle(c,niters) выполняет niters итерации алгоритма.

Входные параметры

c

Матрица комплексных чисел

niters

niters - количество итераций, выполняемых алгоритмом CORDIC. Этот аргумент необязателен. Когда задано, niters должен быть положительным, целочисленным скаляром. Если вы не задаете nitersили, если вы задаете слишком большое значение, алгоритм использует максимальное значение. Для операции с фиксированной точкой максимальное количество итераций является размером слова r или на единицу меньше, чем размер слова theta, в зависимости от того, что меньше. Для операции с плавающей точкой максимальное значение составляет 52 для двойного значения или 23 для одинарного значения. Увеличение количества итераций может привести к более точным результатам, но также увеличивает расходы на расчеты и добавляет задержки.

Выходные аргументы

theta

theta содержит значения углов полярных координат, которые находятся в области значений [-pi, pi] радиан. Если x и y с плавающей точкой, тогда theta имеет тот совпадающий тип данных что и x и y. В противном случае theta является типом данных с фиксированной точкой с тем же размером слова, что и x и y и с наиболее точной длиной дроби для области значений [-pi, pi].

Примеры

Phase angle для двойных входов и для входа с фиксированной точкой.

dblRandomVals = complex(rand(5,4), rand(5,4));
theta_dbl_ref = angle(dblRandomVals);
theta_dbl_cdc = cordicangle(dblRandomVals)
fxpRandomVals = fi(dblRandomVals);
theta_fxp_cdc = cordicangle(fxpRandomVals) 

theta_dbl_cdc =

    1.0422    1.0987    1.2536    0.6122
    0.5893    0.8874    0.3580    0.2020
    0.5840    0.2113    0.8933    0.6355
    0.7212    0.2074    0.9820    0.8110
    1.3640    0.3288    1.4434    1.1291

theta_fxp_cdc =
 
    1.0422    1.0989    1.2534    0.6123
    0.5894    0.8872    0.3579    0.2019
    0.5840    0.2112    0.8931    0.6357
    0.7212    0.2075    0.9819    0.8110
    1.3640    0.3289    1.4434    1.1289

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

Подробнее о

свернуть все

CORDIC

CORDIC - это аббревиатура для COordinate Rotation DIgital Computer. Алгоритм CORDIC, основанный на вращении Givens, является одним из самых аппаратно эффективных алгоритмов, доступных, потому что он требует только итерационных операций shift-add (см. «Ссылки»). Алгоритм CORDIC устраняет необходимость в явных множителях. Используя CORDIC, можно вычислить различные функции, такие как синус, косинус, дуга синус, дуга косинус, дуга тангенс и векторная величина. Можно также использовать этот алгоритм для деления, квадратного корня, гиперболических и логарифмических функций.

Увеличение количества итераций CORDIC может привести к более точным результатам, но это увеличивает расходы на расчеты и добавляет задержки.

Подробнее о

Алгоритмы

свернуть все

Сигнальные блок-схемы

Ядро векторизации CORDIC

Точность ядра CORDIC зависит от выбора начальных значений для X, Y и Z. Этот алгоритм использует следующие начальные значения:

x0  инициализируется  в x входное значениеy0  инициализируется  в y входное значениеz0  инициализируется в 0

Правила распространения fimath

Функции CORDIC отбрасывают любые локальные fimath присоединен к входу.

Функции CORDIC используют собственные внутренние fimath при выполнении вычислений:

  • OverflowActionWrap

  • RoundingMethodFloor

У выхода нет присоединенных fimath.

Расширенные возможности

.
Введенный в R2011b