Возвращает сводную таблицу результатов доверия интервала
возвращает сводную таблицу результатов доверия интервала из tbl
= ci2table(paraCI
)paraCI
, а ParameterConfidenceInterval
объект или вектор объектов.
Загрузка данных
Загрузите выборочные данные в соответствии. Данные хранятся как таблица с идентификаторами переменных, Time, CentralConc и PeripheralConc. Эти синтетические данные представляют временной ход концентраций в плазме, измеренных в восьми различных временных точках как для центрального, так и для периферийного отделений после капельного внутривенного введения в течение трёх индивидуумов.
load data10_32R.mat gData = groupedData(data); gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'}; sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',... 'LineStyle','none');
Создайте модель
Создайте модель с двумя отсеками.
pkmd = PKModelDesign; pkc1 = addCompartment(pkmd,'Central'); pkc1.DosingType = 'Infusion'; pkc1.EliminationType = 'linear-clearance'; pkc1.HasResponseVariable = true; pkc2 = addCompartment(pkmd,'Peripheral'); model = construct(pkmd); configset = getconfigset(model); configset.CompileOptions.UnitConversion = true;
Определите дозирование
Определите капельное внутривенное введение.
dose = sbiodose('dose','TargetName','Drug_Central'); dose.StartTime = 0; dose.Amount = 100; dose.Rate = 50; dose.AmountUnits = 'milligram'; dose.TimeUnits = 'hour'; dose.RateUnits = 'milligram/hour';
Определите параметры
Определите параметры для оценки. Установите границы параметров для каждого параметра. В дополнение к этим явным границам преобразования параметров (такие как журнал, logit или probit) накладывают неявные ограничения.
responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'}; paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'}; estimatedParam = estimatedInfo(paramsToEstimate,... 'InitialValue',[1 1 1 1],... 'Bounds',[0.1 3;0.1 10;0 10;0.1 2]);
Подгонка модели
Выполните неохлажденную подгонку, то есть один набор предполагаемых параметров для каждого пациента.
unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);
Выполните объединенную подгонку, то есть один набор предполагаемых параметров для всех пациентов.
pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);
Вычисление доверительных интервалов для предполагаемых параметров
Вычислите 95% доверительные интервалы для каждого оцененного параметра в неохлажденной подгонке.
ciParamUnpooled = sbioparameterci(unpooledFit);
Отображение результатов
Отображение интервалов доверия в формате таблицы. Для получения дополнительной информации о значении каждого статуса оценки смотрите Статус доверительного интервала параметра.
ci2table(ciParamUnpooled)
ans = 12x7 table Group Name Estimate ConfidenceInterval Type Alpha Status _____ ______________ ________ __________________ ________ _____ ___________ 1 {'Central' } 1.422 1.1533 1.6906 Gaussian 0.05 estimable 1 {'Peripheral'} 1.5629 0.83143 2.3551 Gaussian 0.05 constrained 1 {'Q12' } 0.47159 0.20093 0.80247 Gaussian 0.05 constrained 1 {'Cl_Central'} 0.52898 0.44842 0.60955 Gaussian 0.05 estimable 2 {'Central' } 1.8322 1.7893 1.8751 Gaussian 0.05 success 2 {'Peripheral'} 5.3368 3.9133 6.7602 Gaussian 0.05 success 2 {'Q12' } 0.27641 0.2093 0.34351 Gaussian 0.05 success 2 {'Cl_Central'} 0.86034 0.80313 0.91755 Gaussian 0.05 success 3 {'Central' } 1.6657 1.5818 1.7497 Gaussian 0.05 success 3 {'Peripheral'} 5.5632 4.7557 6.3708 Gaussian 0.05 success 3 {'Q12' } 0.78361 0.65581 0.91142 Gaussian 0.05 success 3 {'Cl_Central'} 1.0233 0.96375 1.0828 Gaussian 0.05 success
Постройте график доверительных интервалов. Если статус оценки доверия интервала success
, он нанесен синим цветом (первый цвет по умолчанию). В противном случае он нанесен красным цветом (второй цвет по умолчанию), что указывает на то, что может потребоваться дальнейшее исследование установленных параметров. Если доверительный интервал not estimable
, затем функция строит красную линию с центрированным крестом. Если существуют какие-либо преобразованные параметры с оценочными значениями 0 (для преобразования журнала) и 1 или 0 (для преобразования probit или logit), то никакое доверие интервалы для этих оценок параметра не строятся. Чтобы увидеть порядок цвета, введите get(groot,'defaultAxesColorOrder')
.
Группы отображаются слева направо в том же порядке, в котором они появляются в GroupNames
свойство объекта, которое используется для пометки оси X. Y-метки являются преобразованными именами параметров.
plot(ciParamUnpooled)
Вычислите доверительные интервалы для объединенной подгонки.
ciParamPooled = sbioparameterci(pooledFit);
Отображение интервалов доверия.
ci2table(ciParamPooled)
ans = 4x7 table Group Name Estimate ConfidenceInterval Type Alpha Status ______ ______________ ________ __________________ ________ _____ ___________ pooled {'Central' } 1.6626 1.3287 1.9965 Gaussian 0.05 estimable pooled {'Peripheral'} 2.687 0.89848 4.8323 Gaussian 0.05 constrained pooled {'Q12' } 0.44956 0.11445 0.85152 Gaussian 0.05 constrained pooled {'Cl_Central'} 0.78493 0.59222 0.97764 Gaussian 0.05 estimable
Постройте график доверительных интервалов. Имя группы помечено как «объединенное» для указания такой подгонки.
plot(ciParamPooled)
Постройте график всех результатов доверительного интервала вместе. По умолчанию доверительный интервал для каждой оценки параметра строится на отдельных осях. Вертикальные линии группируют доверительные интервалы оценок параметров, которые были вычислены в общей подгонке.
ciAll = [ciParamUnpooled;ciParamPooled]; plot(ciAll)
Можно также построить график всех доверительных интервалов в одной оси, сгруппированной по оценкам параметров, с помощью размещения 'Grouped'.
plot(ciAll,'Layout','Grouped')
В этом размещении можно указать на маркер центра каждого доверительного интервала, чтобы увидеть имя группы. Каждый оценочный параметр разделяется вертикальной черной линией. Вертикальные пунктирные линии группируют доверительные интервалы оценок параметров, которые были вычислены в общей подгонке. Границы параметров, заданные в исходной подгонке, отмечены квадратными скобками. Обратите внимание на различные шкалы на оси Y из-за преобразований параметров. Для образца ось Y Q12
находится в линейной шкале, но в Central
находится в шкале журнала из-за ее журнала преобразования.
Вычисление доверительных интервалов для предсказаний модели
Вычислите 95% доверительные интервалы для предсказаний модели, то есть результаты симуляции с использованием оцененных параметров.
% For the pooled fit ciPredPooled = sbiopredictionci(pooledFit); % For the unpooled fit ciPredUnpooled = sbiopredictionci(unpooledFit);
Постройте доверительные интервалы для предсказаний модели
Доверительный интервал для каждой группы строится в отдельном столбце, и каждый ответ строкой. Доверительные интервалы, ограниченные границами, нанесены красным цветом. Доверительные интервалы, не ограниченные границами, нанесены синим цветом.
plot(ciPredPooled)
plot(ciPredUnpooled)
paraCI
- Результаты доверительного интервала параметраParameterConfidenceInterval
вектор | объектаРезультаты доверительного интервала параметра, заданные как ParameterConfidenceInterval
объект или вектор объектов.
tbl
- Сводная таблица результатов доверительных интерваловИтоговая таблица для результатов доверительного интервала, возвращенная как table
. Таблица содержит следующие столбцы.
Имя столбца | Описание |
---|---|
Group | Имя группы |
Name | Предполагаемое имя параметра |
Estimate | Предполагаемое значение параметров |
ConfidenceInterval | Доверие интервалов |
Type | Тип доверительного интервала |
Alpha | Доверительный уровень |
Status | Статус оценки доверительного интервала (для получения дополнительной информации см. «Состояние оценки доверительного интервала параметра») |
У вас есть измененная версия этого примера. Вы хотите открыть этот пример с вашими правками?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.