Байесовская оптимизация с длинными массивами

В этом примере показано, как использовать байесовскую оптимизацию для выбора оптимальных параметров для настройки классификатора ядра при помощи 'OptimizeHyperparameters' аргумент имя-значение. Набор выборочных данных airlinesmall.csv является большим набором данных, который содержит табличный файл данных о рейсах авиакомпании. Этот пример создает длинная таблица, содержащий данные, и извлекает метки классов и данные предиктора из длинная таблица, чтобы запустить процедуру оптимизации.

При выполнении вычислений на длинные массивы MATLAB ® использует либо параллельный пул (по умолчанию, если у вас есть Parallel Computing Toolbox™), либо локальный сеанс работы с MATLAB. Если вы хотите запустить пример с помощью локального сеанса работы с MATLAB, когда у вас есть Parallel Computing Toolbox, можно изменить глобальное окружение выполнения, используя mapreducer функция.

Получите данные в MATLAB

®

Создайте datastore, которое ссылается на расположение папки с данными. Данные могут содержаться в одном файле, наборе файлов или целой папке. Для папок, которые содержат набор файлов, можно задать все расположение папки или использовать символ подстановки, '*.csv', чтобы включать несколько файлов с одним и тем же расширением файла в datastore. Выберите подмножество переменных для работы и обработки 'NA' значения как отсутствующие данные, так что datastore заменяет их на NaN значения. Создайте длинная таблица, который содержит данные в datastore.

ds = datastore('airlinesmall.csv');
ds.SelectedVariableNames = {'Month','DayofMonth','DayOfWeek',...
                            'DepTime','ArrDelay','Distance','DepDelay'};
ds.TreatAsMissing = 'NA';
tt  = tall(ds) % Tall table
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

tt =

  M×7 tall table

    Month    DayofMonth    DayOfWeek    DepTime    ArrDelay    Distance    DepDelay
    _____    __________    _________    _______    ________    ________    ________

     10          21            3          642          8         308          12   
     10          26            1         1021          8         296           1   
     10          23            5         2055         21         480          20   
     10          23            5         1332         13         296          12   
     10          22            4          629          4         373          -1   
     10          28            3         1446         59         308          63   
     10           8            4          928          3         447          -2   
     10          10            6          859         11         954          -1   
      :          :             :           :          :           :           :
      :          :             :           :          :           :           :

Подготовка меток классов и данных предиктора

Определите рейсы, которые опоздали на 10 минут или больше, путем определения логической переменной, которая верна для позднего полета. Эта переменная содержит метки классов. Предварительный просмотр этой переменной включает первые несколько строк.

Y = tt.DepDelay > 10 % Class labels
Y =

  M×1 tall logical array

   1
   0
   1
   1
   0
   1
   0
   0
   :
   :

Создайте длинный массив для данных предиктора.

X = tt{:,1:end-1} % Predictor data
X =

  M×6 tall double matrix

          10          21           3         642           8         308
          10          26           1        1021           8         296
          10          23           5        2055          21         480
          10          23           5        1332          13         296
          10          22           4         629           4         373
          10          28           3        1446          59         308
          10           8           4         928           3         447
          10          10           6         859          11         954
          :           :            :          :           :           :
          :           :            :          :           :           :

Удалите строки в X и Y которые содержат отсутствующие данные.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:end-1); 
Y = R(:,end); 

Выполните байесову оптимизацию, используя OptimizeHyperparameters

Оптимизируйте гиперпараметры автоматически с помощью 'OptimizeHyperparameters' аргумент имя-значение.

Стандартизируйте переменные предиктора.

Z = zscore(X);

Найдите оптимальные значения для 'KernelScale' и 'Lambda' аргументы name-value, которые минимизируют потери на наборе валидации типа «holdout». По умолчанию программное обеспечение выбирает и резервирует 20% данных в качестве данных валидации и обучает модель, используя остальную часть данных. Вы можете изменить задержанную дробь при помощи 'HyperparameterOptimizationOptions' аргумент имя-значение. Для воспроизводимости используйте 'expected-improvement-plus' и установите начальные значения генераторов случайных чисел, используя rng и tallrng. Результаты могут варьироваться в зависимости от количества рабочих процессов и окружения выполнения для длинных массивов. Для получения дополнительной информации смотрите Управление, Где Ваш Код Запуски.

rng('default') 
tallrng('default')
Mdl = fitckernel(Z,Y,'Verbose',0,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: Completed in 7.1 sec
- Pass 2 of 2: Completed in 2.2 sec
Evaluation completed in 12 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.6 sec
Evaluation completed in 1.8 sec
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  KernelScale |       Lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |     0.19672 |      125.49 |     0.19672 |     0.19672 |       1.2297 |    0.0080902 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.93 sec
Evaluation completed in 1.1 sec
|    2 | Accept |     0.19672 |      53.653 |     0.19672 |     0.19672 |     0.039643 |   2.5756e-05 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.5 sec
Evaluation completed in 1.6 sec
|    3 | Accept |     0.19672 |      52.453 |     0.19672 |     0.19672 |      0.02562 |   1.2555e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    4 | Accept |     0.19672 |      57.223 |     0.19672 |     0.19672 |       92.644 |   1.2056e-07 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.5 sec
|    5 | Best   |     0.11469 |      89.981 |     0.11469 |     0.12698 |       11.173 |   0.00024836 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.94 sec
Evaluation completed in 1.1 sec
|    6 | Best   |     0.11365 |      82.031 |     0.11365 |     0.11373 |       10.609 |   0.00025761 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.92 sec
Evaluation completed in 1.1 sec
|    7 | Accept |     0.19672 |      50.604 |     0.11365 |     0.11373 |    0.0059498 |   0.00043861 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|    8 | Accept |     0.12122 |      91.341 |     0.11365 |     0.11371 |        11.44 |   0.00045722 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.97 sec
Evaluation completed in 1.1 sec
|    9 | Best   |     0.10417 |      42.696 |     0.10417 |     0.10417 |       8.0424 |   6.7998e-05 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 1 sec
|   10 | Accept |     0.10433 |      42.215 |     0.10417 |     0.10417 |       9.6694 |   1.4948e-05 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 1 sec
|   11 | Best   |     0.10409 |      41.618 |     0.10409 |     0.10411 |       6.2099 |   6.1093e-06 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   12 | Best   |     0.10383 |      44.635 |     0.10383 |     0.10404 |       5.6767 |   7.6134e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|   13 | Accept |     0.10408 |      45.429 |     0.10383 |     0.10365 |       8.1769 |   8.5993e-09 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|   14 | Accept |     0.10404 |      41.928 |     0.10383 |     0.10361 |       7.6191 |   6.4079e-07 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.93 sec
Evaluation completed in 1.1 sec
|   15 | Best   |     0.10351 |      42.094 |     0.10351 |     0.10362 |       4.2987 |   9.2645e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   16 | Accept |     0.10404 |      44.684 |     0.10351 |     0.10362 |       4.8747 |   1.7838e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 1 sec
|   17 | Accept |     0.10657 |      88.006 |     0.10351 |     0.10357 |       4.8239 |   0.00016344 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   18 | Best   |     0.10299 |      41.303 |     0.10299 |     0.10358 |       3.5555 |   2.7165e-06 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|   19 | Accept |     0.10366 |      41.301 |     0.10299 |     0.10324 |       3.8035 |   1.3542e-06 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 0.99 sec
|   20 | Accept |     0.10337 |      41.345 |     0.10299 |     0.10323 |        3.806 |   1.8101e-06 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  KernelScale |       Lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |     0.10345 |      41.418 |     0.10299 |     0.10322 |       3.3655 |    9.082e-09 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.86 sec
Evaluation completed in 0.98 sec
|   22 | Accept |     0.19672 |      60.129 |     0.10299 |     0.10322 |       999.62 |   1.2609e-06 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   23 | Accept |     0.10315 |      41.133 |     0.10299 |     0.10306 |       3.6716 |   1.2445e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   24 | Accept |     0.19672 |      48.262 |     0.10299 |     0.10306 |    0.0010004 |   2.6214e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|   25 | Accept |     0.19672 |      48.334 |     0.10299 |     0.10306 |      0.21865 |    0.0026529 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.86 sec
Evaluation completed in 0.98 sec
|   26 | Accept |     0.19672 |      60.229 |     0.10299 |     0.10306 |       299.92 |    0.0032109 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 0.99 sec
|   27 | Accept |     0.19672 |      48.361 |     0.10299 |     0.10306 |     0.002436 |    0.0040428 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.2 sec
Evaluation completed in 1.4 sec
|   28 | Accept |     0.19672 |      52.539 |     0.10299 |     0.10305 |      0.50559 |   3.3667e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   29 | Accept |     0.10354 |      43.957 |     0.10299 |     0.10313 |       3.7754 |   9.5626e-09 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.93 sec
Evaluation completed in 1.1 sec
|   30 | Accept |     0.10405 |      41.388 |     0.10299 |     0.10315 |       8.9864 |   2.3136e-07 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 1677.1387 seconds
Total objective function evaluation time: 1645.7748

Best observed feasible point:
    KernelScale      Lambda  
    ___________    __________

      3.5555       2.7165e-06

Observed objective function value = 0.10299
Estimated objective function value = 0.10332
Function evaluation time = 41.3029

Best estimated feasible point (according to models):
    KernelScale      Lambda  
    ___________    __________

      3.6716       1.2445e-08

Estimated objective function value = 0.10315
Estimated function evaluation time = 42.3461
Mdl = 
  ClassificationKernel
            PredictorNames: {'x1'  'x2'  'x3'  'x4'  'x5'  'x6'}
              ResponseName: 'Y'
                ClassNames: [0 1]
                   Learner: 'svm'
    NumExpansionDimensions: 256
               KernelScale: 3.6716
                    Lambda: 1.2445e-08
             BoxConstraint: 665.9442


  Properties, Methods

Выполните байесову оптимизацию при помощи bayesopt

Также можно использовать bayesopt функция для нахождения оптимальных значений гиперпараметров.

Разделите набор данных на наборы для обучения и тестирования. Укажите выборку удержания 1/3 для тестового набора.

rng('default') % For reproducibility
tallrng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',1/3);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition);         % Indices for the test set

Извлеките данные обучения и проверки и стандартизируйте данные предиктора.

Ytrain = Y(trainingInds); % Training class labels
Xtrain = X(trainingInds,:);
[Ztrain,mu,stddev] = zscore(Xtrain); % Standardized training data

Ytest = Y(testInds); % Testing class labels
Xtest = X(testInds,:);
Ztest = (Xtest-mu)./stddev; % Standardized test data

Задайте переменные sigma и lambda чтобы найти оптимальные значения для 'KernelScale' и 'Lambda' аргументы имя-значение. Использование optimizableVariable и задайте широкую область значений для переменных, потому что оптимальные значения неизвестны. Примените логарифмическое преобразование к переменным для поиска оптимальных значений по журналу шкале.

N = gather(numel(Ytrain)); % Evaluate the length of the tall training array in memory
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete
- Pass 1 of 1: Completed in 0.95 sec
Evaluation 91% complete

Evaluation completed in 1.1 sec
sigma = optimizableVariable('sigma',[1e-3,1e3],'Transform','log');
lambda = optimizableVariable('lambda',[(1e-3)/N, (1e3)/N],'Transform','log');

Создайте целевую функцию для байесовской оптимизации. Целевая функция берет в таблице, которая содержит переменные sigma и lambda, а затем вычисляет значение классификационных потерь для двоичной модели классификации Гауссова ядра, обученной с помощью fitckernel функция. Задайте 'Verbose',0 в пределах fitckernel подавление итерационного отображения диагностической информации.

minfn = @(z)gather(loss(fitckernel(Ztrain,Ytrain, ...
    'KernelScale',z.sigma,'Lambda',z.lambda,'Verbose',0), ...
    Ztest,Ytest));

Оптимизируйте параметры [sigma,lambda] модели классификации ядра в отношении потерь классификации при помощи bayesopt. По умолчанию bayesopt отображает итерационную информацию об оптимизации в командной строке. Для воспроизводимости установите AcquisitionFunctionName опция для 'expected-improvement-plus'. Функция сбора по умолчанию зависит от времени выполнения и, следовательно, может давать различные результаты.

results = bayesopt(minfn,[sigma,lambda],'AcquisitionFunctionName','expected-improvement-plus')
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |        sigma |       lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |     0.19651 |      84.526 |     0.19651 |     0.19651 |       1.2297 |     0.012135 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    2 | Accept |     0.19651 |      112.57 |     0.19651 |     0.19651 |     0.039643 |   3.8633e-05 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|    3 | Accept |     0.19651 |      80.282 |     0.19651 |     0.19651 |      0.02562 |   1.8832e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|    4 | Accept |     0.19651 |      52.306 |     0.19651 |     0.19651 |       92.644 |   1.8084e-07 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    5 | Accept |     0.19651 |      52.717 |     0.19651 |     0.19651 |       978.95 |   0.00015066 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    6 | Accept |     0.19651 |      90.336 |     0.19651 |     0.19651 |    0.0089609 |    0.0059189 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    7 | Accept |     0.19651 |      110.35 |     0.19651 |     0.19651 |    0.0010228 |    1.292e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|    8 | Accept |     0.19651 |      76.594 |     0.19651 |     0.19651 |      0.27475 |    0.0044831 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    9 | Accept |     0.19651 |      77.641 |     0.19651 |     0.19651 |      0.81326 |   1.0753e-07 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   10 | Accept |     0.19651 |      100.21 |     0.19651 |     0.19651 |    0.0040507 |   0.00011333 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   11 | Accept |     0.19651 |      52.287 |     0.19651 |     0.19651 |       964.67 |   1.2786e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   12 | Accept |     0.19651 |       107.7 |     0.19651 |     0.19651 |      0.24069 |    0.0070503 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   13 | Accept |     0.19651 |      52.092 |     0.19651 |     0.19651 |       974.15 |     0.010898 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|   14 | Accept |     0.19651 |      92.184 |     0.19651 |     0.19651 |    0.0013246 |    0.0011748 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   15 | Accept |     0.19651 |      87.893 |     0.19651 |     0.19651 |    0.0067415 |   1.9074e-07 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|   16 | Accept |     0.19651 |      110.46 |     0.19651 |     0.19651 |     0.020448 |    1.247e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   17 | Accept |     0.19651 |      104.12 |     0.19651 |     0.19651 |    0.0016556 |    0.0001784 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   18 | Accept |     0.19651 |      85.263 |     0.19651 |     0.19651 |    0.0047914 |   2.3289e-06 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   19 | Accept |     0.19651 |      52.102 |     0.19651 |     0.19651 |       90.015 |   0.00024412 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|   20 | Accept |     0.19651 |      82.238 |     0.19651 |     0.19651 |      0.68775 |   2.7178e-07 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |        sigma |       lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |     0.19651 |      49.468 |     0.19651 |     0.19651 |       49.073 |   0.00014766 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   22 | Accept |     0.19651 |      49.183 |     0.19651 |     0.19651 |       25.955 |   8.4946e-05 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   23 | Accept |     0.19651 |      84.781 |     0.19651 |     0.19651 |     0.002241 |   1.6284e-06 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   24 | Accept |     0.19651 |      90.023 |     0.19651 |     0.19651 |     0.060661 |   0.00041011 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   25 | Accept |     0.19651 |      87.349 |     0.19651 |     0.19651 |     0.035771 |    0.0023369 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|   26 | Accept |     0.19651 |      49.932 |     0.19651 |     0.19651 |       713.45 |   3.5177e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   27 | Accept |     0.19651 |      87.169 |     0.19651 |     0.19651 |     0.012395 |   1.8186e-06 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   28 | Accept |     0.19651 |       94.87 |     0.19651 |     0.19651 |     0.042872 |    0.0015886 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   29 | Best   |     0.10795 |      37.932 |     0.10795 |     0.19346 |       1.5886 |   4.9128e-07 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|   30 | Accept |     0.19651 |      52.241 |     0.10795 |     0.19356 |       236.64 |   5.0506e-06 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 2455.5118 seconds
Total objective function evaluation time: 2346.8025

Best observed feasible point:
    sigma       lambda  
    ______    __________

    1.5886    4.9128e-07

Observed objective function value = 0.10795
Estimated objective function value = 0.19356
Function evaluation time = 37.9317

Best estimated feasible point (according to models):
    sigma       lambda  
    ______    __________

    1.5886    4.9128e-07

Estimated objective function value = 0.19356
Estimated function evaluation time = 66.1901
results = 
  BayesianOptimization with properties:

                      ObjectiveFcn: @(z)gather(loss(fitckernel(Ztrain,Ytrain,'KernelScale',z.sigma,'Lambda',z.lambda,'Verbose',0),Ztest,Ytest))
              VariableDescriptions: [1×2 optimizableVariable]
                           Options: [1×1 struct]
                      MinObjective: 0.1079
                   XAtMinObjective: [1×2 table]
             MinEstimatedObjective: 0.1936
          XAtMinEstimatedObjective: [1×2 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 2.4555e+03
                         NextPoint: [1×2 table]
                            XTrace: [30×2 table]
                    ObjectiveTrace: [30×1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30×1 cell}
      ObjectiveEvaluationTimeTrace: [30×1 double]
                IterationTimeTrace: [30×1 double]
                        ErrorTrace: [30×1 double]
                  FeasibilityTrace: [30×1 logical]
       FeasibilityProbabilityTrace: [30×1 double]
               IndexOfMinimumTrace: [30×1 double]
             ObjectiveMinimumTrace: [30×1 double]
    EstimatedObjectiveMinimumTrace: [30×1 double]

Верните лучшую допустимую точку в байесовской модели results при помощи bestPoint функция. Используйте критерий по умолчанию min-visited-upper-confidence-interval, который определяет лучшую допустимую точку как посещаемую точку, которая минимизирует верхний доверительный интервал от значения целевой функции.

zbest = bestPoint(results)
zbest=1×2 table
    sigma       lambda  
    ______    __________

    1.5886    4.9128e-07

Таблица zbest содержит оптимальные оценочные значения для 'KernelScale' и 'Lambda' аргументы имя-значение. Можно задать эти значения при обучении нового оптимизированного классификатора ядра при помощи

Mdl = fitckernel(Ztrain,Ytrain,'KernelScale',zbest.sigma,'Lambda',zbest.lambda)

Для длинные массивы процедура оптимизации может занять много времени. Если набор данных слишком велик, чтобы запустить процедуру оптимизации, можно попытаться оптимизировать параметры, используя только частичные данные. Используйте datasample и задайте 'Replace','false' для выборочных данных без замены.

См. также

| | | | | | | |

Для просмотра документации необходимо авторизоваться на сайте