Классификационные потери для Гауссовой модели классификации ядра
возвращает классификационные потери для модели L
= loss(Mdl
,Tbl
,ResponseVarName
)Mdl
использование данных предиктора в Tbl
и истинные метки классов в Tbl.ResponseVarName
.
задает опции, использующие один или несколько аргументы пары "имя-значение" в дополнение к любой комбинации входных аргументов в предыдущих синтаксисах. Для примера можно задать функцию потерь классификации и веса наблюдений. Затем, L
= loss(___,Name,Value
)loss
возвращает взвешенные классификационные потери с помощью указанной функции потерь.
Загрузите ionosphere
набор данных. Этот набор данных имеет 34 предиктора и 351 двоичный ответ для радиолокационных возвратов, либо плохо ('b'
) или хорошо ('g'
).
load ionosphere
Разделите набор данных на наборы для обучения и тестирования. Задайте 15% -ную выборку удержания для тестового набора.
rng('default') % For reproducibility Partition = cvpartition(Y,'Holdout',0.15); trainingInds = training(Partition); % Indices for the training set testInds = test(Partition); % Indices for the test set
Обучите модель классификации двоичных ядер с помощью набора обучающих данных.
Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));
Оцените ошибку классификации набора обучающих данных и ошибку классификации набора тестов.
ceTrain = loss(Mdl,X(trainingInds,:),Y(trainingInds))
ceTrain = 0.0067
ceTest = loss(Mdl,X(testInds,:),Y(testInds))
ceTest = 0.1140
Загрузите ionosphere
набор данных. Этот набор данных имеет 34 предиктора и 351 двоичный ответ для радиолокационных возвратов, либо плохо ('b'
) или хорошо ('g'
).
load ionosphere
Разделите набор данных на наборы для обучения и тестирования. Задайте 15% -ную выборку удержания для тестового набора.
rng('default') % For reproducibility Partition = cvpartition(Y,'Holdout',0.15); trainingInds = training(Partition); % Indices for the training set testInds = test(Partition); % Indices for the test set
Обучите модель классификации двоичных ядер с помощью набора обучающих данных.
Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));
Создайте анонимную функцию, которая измеряет линейные потери, то есть
- вес для наблюдения j, является ответом j (-1 для отрицательного класса и 1 в противном случае), и - необработанная классификационная оценка наблюдения j.
linearloss = @(C,S,W,Cost)sum(-W.*sum(S.*C,2))/sum(W);
Пользовательские функции потерь должны быть записаны в конкретную форму. Для правил записи пользовательской функции потерь смотрите 'LossFun'
аргумент пары "имя-значение".
Оцените потери классификации набора обучающих данных и потери классификации набора тестов с помощью линейной функции потерь.
ceTrain = loss(Mdl,X(trainingInds,:),Y(trainingInds),'LossFun',linearloss)
ceTrain = -1.0851
ceTest = loss(Mdl,X(testInds,:),Y(testInds),'LossFun',linearloss)
ceTest = -0.7821
Mdl
- Модель классификации двоичных ядерClassificationKernel
объект моделиМодель классификации двоичных ядер, заданная как ClassificationKernel
объект модели. Можно создать ClassificationKernel
моделировать объект используя fitckernel
.
X
- Данные предиктораДанные предиктора, заданные как n -by p числовая матрица, где n - количество наблюдений, а p - количество предикторов, используемых для обучения Mdl
.
Длина Y
и количество наблюдений в X
должно быть равным.
Типы данных: single
| double
Y
- Метки классовМетки классов, заданные как категориальные символьные или строковые массивы; логический или числовой вектор; или массив ячеек из векторов символов.
Тип данных Y
должно совпадать с типом данных Mdl.ClassNames
. (Программа обрабатывает массивы строк как массивы ячеек векторов символов.)
Различные классы в Y
должен быть подмножеством Mdl.ClassNames
.
Если Y
является символьный массив, тогда каждый элемент должен соответствовать одной строке массива.
Длина Y
должно быть равно количеству наблюдений в X
или Tbl
.
Типы данных: categorical
| char
| string
| logical
| single
| double
| cell
Tbl
- Выборочные данныеВыборочные данные, используемых для обучения модели, заданная как таблица. Каждая строка Tbl
соответствует одному наблюдению, и каждый столбец соответствует одной переменной предиктора. Опционально Tbl
может содержать дополнительные столбцы для переменной отклика и весов наблюдений. Tbl
должны содержать все предикторы, используемые для обучения Mdl
. Многополюсные переменные и массивы ячеек, отличные от массивов ячеек векторов символов, не разрешены.
Если Tbl
содержит переменную отклика, используемую для обучения Mdl
, тогда вам не нужно указывать ResponseVarName
или Y
.
Если вы обучаете Mdl
используя выборочные данные, содержащуюся в таблице, затем входные данные для loss
также должно быть в таблице.
ResponseVarName
- Имя переменной откликаTbl
Имя переменной отклика, заданное как имя переменной в Tbl
. Если Tbl
содержит переменную отклика, используемую для обучения Mdl
, тогда вам не нужно указывать ResponseVarName
.
Если вы задаете ResponseVarName
, затем необходимо задать его как вектор символов или строковый скаляр. Для примера, если переменная отклика сохранена как Tbl.Y
, затем задайте ResponseVarName
как 'Y'
. В противном случае программное обеспечение обрабатывает все столбцы Tbl
, включая Tbl.Y
, как предикторы.
Переменная отклика должна быть категориальными символьными или строковыми массивами; логический или числовой вектор; или массив ячеек из векторов символов. Если переменная отклика является символьным массивом, то каждый элемент должен соответствовать одной строке массива.
Типы данных: char
| string
Задайте необязательные разделенные разделенными запятой парами Name,Value
аргументы. Name
- имя аргумента и Value
- соответствующее значение. Name
должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN
.
L = loss(Mdl,X,Y,'LossFun','quadratic','Weights',weights)
возвращает взвешенные классификационные потери с помощью квадратичной функции потерь.'LossFun'
- Функция потерь'classiferror'
(по умолчанию) | 'binodeviance'
| 'exponential'
| 'hinge'
| 'logit'
| 'mincost'
| 'quadratic'
| указатель на функциюФункция потерь, заданная как разделенная разделенными запятой парами, состоящая из 'LossFun'
и встроенное имя функции потерь или указатель на функцию.
В этой таблице перечислены доступные функции потерь. Задайте единицу, используя соответствующее ей значение.
Значение | Описание |
---|---|
'binodeviance' | Биномиальное отклонение |
'classiferror' | Неверно классифицированный коэффициент в десятичных числах |
'exponential' | Экспоненциальные потери |
'hinge' | Потеря шарнира |
'logit' | Логистические потери |
'mincost' | Минимальные ожидаемые затраты на неправильную классификацию (для классификационных оценок, которые являются апостериорными вероятностями) |
'quadratic' | Квадратичные потери |
'mincost'
подходит для классификационных оценок, которые являются апостериорными вероятностями. Для моделей классификации ядра учащиеся логистической регрессии возвращают апостериорные вероятности как классификационные оценки по умолчанию, но ученики SVM этого не делают (см. predict
).
Чтобы задать пользовательскую функцию потерь, используйте обозначение указателя на функцию. Функция должна иметь следующую форму:
lossvalue = lossfun
(C,S,W,Cost)
Выходной аргумент lossvalue
является скаляром.
Вы задаете имя функции (lossfun
).
C
является n
-by- K
логическая матрица с строками, указывающими класс, к которому принадлежит соответствующее наблюдение. n
количество наблюдений в Tbl
или X
, и K
- количество различных классов (numel(Mdl.ClassNames)
. Порядок столбцов соответствует порядку классов в Mdl.ClassNames
. Создание C
путем установки C(p,q) = 1
, если наблюдение p
находится в q классов
, для каждой строки. Установите все другие элементы строки p
на 0
.
S
является n
-by- K
числовая матрица классификационных оценок. Порядок столбцов соответствует порядку классов в Mdl.ClassNames
. S
является матрицей классификационных оценок, подобной выходным данным predict
.
W
является n
-by-1 числовой вектор весов наблюдений.
Cost
является K
-by- K
числовая матрица затрат на неправильную классификацию. Для примера, Cost = ones(K) – eye(K)
задает стоимость 0
для правильной классификации и 1
для неправильной классификации.
Пример: 'LossFun',
@ lossfun
Типы данных: char
| string
| function_handle
'Weights'
- Веса наблюденийones(size(X,1),1)
(по умолчанию) | числовой вектор | имя переменной в Tbl
Веса наблюдений, заданные как разделенная разделенными запятой парами, состоящая из 'Weights'
и числовой вектор или имя переменной в Tbl
.
Если Weights
является числовым вектором, затем размером Weights
должно быть равно количеству строк в X
или Tbl
.
Если Weights
- имя переменной в Tbl
, необходимо указать Weights
как вектор символов или строковый скаляр. Для примера, если веса сохранены как Tbl.W
, затем задайте Weights
как 'W'
. В противном случае программное обеспечение обрабатывает все столбцы Tbl
, включая Tbl.W
, как предикторы.
Если вы поставляете веса, loss
вычисляет взвешенные классификационные потери и нормализует веса до значения предыдущей вероятности в соответствующем классе.
Типы данных: double
| single
| char
| string
L
- Классификационные потериКлассификационные потери, возвращенные как числовой скаляр. Толкование L
зависит от Weights
и LossFun
.
Classification loss функции измеряют прогнозирующую неточность классификационных моделей. Когда вы сравниваете один и тот же тип потерь среди многих моделей, более низкая потеря указывает на лучшую прогнозирующую модель.
Предположим следующее:
L - средневзвешенные классификационные потери.
n - размер выборки.
yj - наблюдаемая метка класса. Программное обеспечение кодирует его как -1 или 1, указывая на отрицательный или положительный класс (или первый или второй класс в ClassNames
свойство), соответственно.
f (Xj) является баллом классификации положительного класса для j наблюдений (строка) X данных предиктора.
mj = yj f (Xj) является классификационной оценкой для классификации j наблюдений в класс, относящийся к yj. Положительные значения mj указывают на правильную классификацию и не вносят большой вклад в средние потери. Отрицательные значения mj указывают на неправильную классификацию и вносят значительный вклад в среднюю потерю.
Вес для j наблюдения wj. Программа нормализует веса наблюдений так, чтобы они суммировались с соответствующей вероятностью предыдущего класса. Программное обеспечение также нормализует предыдущие вероятности, так что они равны 1. Поэтому,
В этой таблице описываются поддерживаемые функции потерь, которые можно задать с помощью 'LossFun'
аргумент имя-значение.
Функция потерь | Значение LossFun | Уравнение |
---|---|---|
Биномиальное отклонение | 'binodeviance' | |
Экспоненциальные потери | 'exponential' | |
Неверно классифицированный коэффициент в десятичных числах | 'classiferror' | - метка класса, соответствующая классу с максимальным счетом. I {·} является функцией индикации. |
Потеря шарнира | 'hinge' | |
Логит потеря | 'logit' | |
Минимальные ожидаемые затраты на неправильную классификацию | 'mincost' |
Программа вычисляет взвешенные минимальные ожидаемые затраты классификации, используя эту процедуру для наблюдений j = 1,..., n.
Взвешенное среднее значение минимальных ожидаемых потерь от неправильной классификации Если вы используете матрицу затрат по умолчанию (значение элемента которой 0 для правильной классификации и 1 для неправильной классификации), то |
Квадратичные потери | 'quadratic' |
Этот рисунок сравнивает функции потерь (кроме 'mincost'
) по счету m для одного наблюдения. Некоторые функции нормированы, чтобы пройти через точку (0,1).
Указания и ограничения по применению:
loss
не поддерживает высокие table
данные.
Для получения дополнительной информации см. Раздел «Длинные массивы»
У вас есть измененная версия этого примера. Вы хотите открыть этот пример с вашими правками?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.