ClassificationKernel

Гауссовская модель классификации ядра с использованием расширения случайных функций

Описание

ClassificationKernel является обученным объектом модели для двоичной Гауссовой модели классификации ядра с использованием расширения случайных функций. ClassificationKernel является более практичным для приложений больших данных, которые имеют большие наборы обучающих данных, но могут также применяться к меньшим наборам данных, которые помещаются в памяти.

В отличие от других классификационных моделей и для экономичного использования памяти, ClassificationKernel объекты модели не хранят обучающие данные. Однако они сохраняют информацию, такую как количество размерностей расширенного пространства, параметр шкалы ядра, вероятности предыдущего класса и сила регуляризации.

Можно использовать обученные ClassificationKernel модели для продолжения обучения с использованием обучающих данных и для предсказания меток или классификационных оценок для новых данных. Для получения дополнительной информации см. resume и predict.

Создание

Создайте ClassificationKernel использование объекта fitckernel функция. Эта функция преобразует данные в низкомерном пространстве в высокомерное пространство, затем подбирает линейную модель в высокомерном пространстве путем минимизации регуляризованной целевой функции. Линейная модель в высоко-размерном пространстве эквивалентна модели с Гауссовым ядром в низкомерном пространстве. Доступные линейные классификационные модели включают регуляризованные машины опорных векторов (SVM) и логистические регрессионые модели.

Свойства

расширить все

Свойства классификации ядра

Тип модели линейной классификации, заданный как 'logistic' или 'svm'.

В следующей таблице: f(x)=T(x)β+b.

  • x является наблюдением ( вектором-строкой) от p предиктора переменных.

  • T(·) является преобразованием наблюдения ( вектора-строки) для функции расширения. T (x) карты x вp в высокомерное пространство (m).

  • β является вектором m коэффициентов.

  • b - скалярное смещение.

ЗначениеАлгоритмФункция потерьFittedLoss Значение
'logistic'Логистическая регрессияОтклонение (логистическое): [y,f(x)]=log{1+exp[yf(x)]}'logit'
'svm'Поддерживайте векторную машинуШарнир: [y,f(x)]=max[0,1yf(x)]'hinge'

Количество размерностей расширенного пространства, заданное как положительное целое число.

Типы данных: single | double

Параметр шкалы ядра, заданный как положительная скалярная величина.

Типы данных: char | single | double

Прямоугольное ограничение, заданное как положительная скалярная величина.

Типы данных: double | single

Сила термина регуляризации, заданная как неотрицательный скаляр.

Типы данных: single | double

Это свойство доступно только для чтения.

Функция потерь, используемая для соответствия линейной модели, задается как 'hinge' или 'logit'.

ЗначениеАлгоритмФункция потерьLearner Значение
'hinge'Поддерживайте векторную машинуШарнир: [y,f(x)]=max[0,1yf(x)]'svm'
'logit'Логистическая регрессияОтклонение (логистическое): [y,f(x)]=log{1+exp[yf(x)]}'logistic'

Тип штрафа сложности, который всегда 'ridge (L2)'.

Программное обеспечение составляет целевую функцию для минимизации из суммы функции средних потерь (см FittedLoss) и срок регуляризации, штраф за хребет (L 2 ).

Штраф за хребет (L 2)

λ2j=1pβj2

где λ определяет прочность термина регуляризации (см Lambda). Программа исключает термин смещения (β 0) из штрафа за регуляризацию.

Другие классификационные свойства

Категориальные индексы предиктора, заданные как вектор положительных целых чисел. CategoricalPredictors содержит значения индекса, соответствующие столбцам данных предиктора, которые содержат категориальные предикторы. Если ни один из предикторов не является категориальным, то это свойство пустое ([]).

Типы данных: single | double

Уникальные метки классов, используемые в обучении, заданные как категориальный или символьный массив, логический или числовой вектор или массив ячеек векторов символов. ClassNames имеет тот совпадающий тип данных, что и метки классов Y. (Программа обрабатывает массивы строк как массивы ячеек векторов символов.) ClassNames также определяет порядок классов.

Типы данных: categorical | char | logical | single | double | cell

Это свойство доступно только для чтения.

Затраты на неправильную классификацию, заданные как квадратная числовая матрица. Cost имеет K строки и столбцы, где K количество классов.

Стоимость (i, j) - стоимость классификации точки в класс j если его класс true i. Порядок строк и столбцов Cost соответствует порядку классов в ClassNames.

Типы данных: double

Параметры, используемые для настройки ClassificationKernel модель, заданная как структура.

Доступ к полям ModelParameters использование записи через точку. Для примера получите доступ к относительной погрешности о линейных коэффициентах и термине смещения при помощи Mdl.ModelParameters.BetaTolerance.

Типы данных: struct

Имена предиктора в порядке их внешнего вида в данных предиктора, заданные как массив ячеек из векторов символов. Длина PredictorNames равен количеству столбцов, используемых в качестве переменных предиктора в обучающих данных X или Tbl.

Типы данных: cell

Расширенные имена предикторов, заданные как массив ячеек из векторов символов.

Если модель использует кодировку для категориальных переменных, то ExpandedPredictorNames включает имена, которые описывают расширенные переменные. В противном случае ExpandedPredictorNames то же, что и PredictorNames.

Типы данных: cell

Это свойство доступно только для чтения.

Вероятности предыдущего класса, заданные как числовой вектор. Prior имеет столько элементов, сколько классов в ClassNames, и порядок элементов соответствует элементам ClassNames.

Типы данных: double

Имя переменной отклика, заданное как вектор символов.

Типы данных: char

Функция преобразования счета для применения к предсказанным счетам, заданным как имя функции или указатель на функцию.

Для моделей классификации ядра и до преобразования счета, предсказанная классификационная оценка для x наблюдения ( вектора-строки) является f(x)=T(x)β+b.

  • T(·) является преобразованием наблюдения для расширения функции.

  • β - предполагаемый вектор-столбец коэффициентов.

  • b - предполагаемое скалярное смещение.

Чтобы изменить функцию преобразования счета на functionдля примера используйте запись через точку.

  • Для встроенной функции введите этот код и замените function со значением из таблицы.

    Mdl.ScoreTransform = 'function';

    ЗначениеОписание
    'doublelogit'1/(1 + e–2x)
    'invlogit'журнал (x/( 1 - x))
    'ismax'Устанавливает счет для класса с самым большим счетом равным 1 и устанавливает счета для всех других классов равным 0
    'logit'1/(1 + ex)
    'none' или 'identity'x (без преобразования)
    'sign'-1 для x < 0
    0 для x = 0
    1 для x > 0
    'symmetric'2 x – 1
    'symmetricismax'Устанавливает счет для класса с самым большим счетом равным 1 и устанавливает счета для всех других классов равной -1
    'symmetriclogit'2/(1 + ex) – 1

  • Для MATLAB® function, или функция, которую вы задаете, вводите указатель на функцию.

    Mdl.ScoreTransform = @function;

    function необходимо принять матрицу исходных счетов для каждого класса, а затем вернуть матрицу того же размера, представляющую преобразованные счета для каждого класса.

Типы данных: char | function_handle

Функции объекта

edgeКлассификационные ребра для Гауссовой модели классификации ядер
limeЛокальные интерпретируемые модели-агностические объяснения (LIME)
lossКлассификационные потери для Гауссовой модели классификации ядра
marginКлассификационные поля для Гауссовой модели классификации ядра
partialDependenceВычисление частичной зависимости
plotPartialDependenceСоздайте график частичной зависимости (PDP) и отдельные графики условного ожидания (ICE)
predictПредсказать метки для Гауссовой модели классификации ядра
resumeВозобновите обучение Гауссовой модели классификации ядра
shapleyЗначения Shapley

Примеры

свернуть все

Обучите модель классификации двоичных ядер с помощью SVM.

Загрузите ionosphere набор данных. Этот набор данных имеет 34 предиктора и 351 двоичный ответ для радиолокационных возвратов, либо плохо ('b') или хорошо ('g').

load ionosphere
[n,p] = size(X)
n = 351
p = 34
resp = unique(Y)
resp = 2x1 cell
    {'b'}
    {'g'}

Обучите двоичную модель классификации ядра, которая определяет, является ли радарный возврат плохим ('b') или хорошо ('g'). Извлеките сводные данные подгонки, чтобы определить, насколько хорошо алгоритм оптимизации подходит модели к данным.

rng('default') % For reproducibility
[Mdl,FitInfo] = fitckernel(X,Y)
Mdl = 
  ClassificationKernel
              ResponseName: 'Y'
                ClassNames: {'b'  'g'}
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1


  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'hinge'
                  Lambda: 0.0028
           BetaTolerance: 1.0000e-04
       GradientTolerance: 1.0000e-06
          ObjectiveValue: 0.2604
       GradientMagnitude: 0.0028
    RelativeChangeInBeta: 8.2512e-05
                 FitTime: 1.0377
                 History: []

Mdl является ClassificationKernel модель. Чтобы проверить ошибку классификации в выборке, можно пройти Mdl и обучающих данных или новых данных для loss функция. Или ты можешь пройти Mdl и новые данные предиктора в predict функция для предсказания меток классов для новых наблюдений. Можно также пройти Mdl и обучающих данных к resume функция для продолжения обучения.

FitInfo - массив структур, содержащий информацию об оптимизации. Использование FitInfo для определения, являются ли измерения оптимизации завершением удовлетворительными.

Для лучшей точности можно увеличить максимальное количество итераций оптимизации ('IterationLimit') и уменьшить значения допусков ('BetaTolerance' и 'GradientTolerance') с помощью аргументов пары "имя-значение". Это может улучшить такие меры, как ObjectiveValue и RelativeChangeInBeta в FitInfo. Можно также оптимизировать параметры модели при помощи 'OptimizeHyperparameters' аргумент пары "имя-значение".

Загрузите ionosphere набор данных. Этот набор данных имеет 34 предиктора и 351 двоичный ответ для радиолокационных возвратов, либо плохо ('b') или хорошо ('g').

load ionosphere

Разделите набор данных на наборы для обучения и тестирования. Укажите 20% -ная выборка удержания для тестового набора.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.20);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Обучите двоичную модель классификации ядра, которая определяет, является ли радарный возврат плохим ('b') или хорошо ('g').

Mdl = fitckernel(XTrain,YTrain,'IterationLimit',5,'Verbose',1);
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  1.000000e+00 |  0.000000e+00 |  2.811388e-01 |                |             0 |
|  LBFGS |      1 |            1 |  7.585395e-01 |  4.000000e+00 |  3.594306e-01 |   1.000000e+00 |          2048 |
|  LBFGS |      1 |            2 |  7.160994e-01 |  1.000000e+00 |  2.028470e-01 |   6.923988e-01 |          2048 |
|  LBFGS |      1 |            3 |  6.825272e-01 |  1.000000e+00 |  2.846975e-02 |   2.388909e-01 |          2048 |
|  LBFGS |      1 |            4 |  6.699435e-01 |  1.000000e+00 |  1.779359e-02 |   1.325304e-01 |          2048 |
|  LBFGS |      1 |            5 |  6.535619e-01 |  1.000000e+00 |  2.669039e-01 |   4.112952e-01 |          2048 |
|=================================================================================================================|

Mdl является ClassificationKernel модель.

Спрогнозируйте метки набора тестов, создайте матрицу неточностей для тестового набора и оцените ошибку классификации для тестового набора.

label = predict(Mdl,XTest);
ConfusionTest = confusionchart(YTest,label);

Figure contains an object of type ConfusionMatrixChart.

L = loss(Mdl,XTest,YTest)
L = 0.3594

Mdl неправильная классификация всех плохих возвратов радара как хороших возвратов.

Продолжите обучение при помощи resume. Эта функция продолжает обучение с теми же опциями, что и для обучения Mdl.

UpdatedMdl = resume(Mdl,XTrain,YTrain);
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  6.535619e-01 |  0.000000e+00 |  2.669039e-01 |                |          2048 |
|  LBFGS |      1 |            1 |  6.132547e-01 |  1.000000e+00 |  6.355537e-03 |   1.522092e-01 |          2048 |
|  LBFGS |      1 |            2 |  5.938316e-01 |  4.000000e+00 |  3.202847e-02 |   1.498036e-01 |          2048 |
|  LBFGS |      1 |            3 |  4.169274e-01 |  1.000000e+00 |  1.530249e-01 |   7.234253e-01 |          2048 |
|  LBFGS |      1 |            4 |  3.679212e-01 |  5.000000e-01 |  2.740214e-01 |   2.495886e-01 |          2048 |
|  LBFGS |      1 |            5 |  3.332261e-01 |  1.000000e+00 |  1.423488e-02 |   9.558680e-02 |          2048 |
|  LBFGS |      1 |            6 |  3.235335e-01 |  1.000000e+00 |  7.117438e-03 |   7.137260e-02 |          2048 |
|  LBFGS |      1 |            7 |  3.112331e-01 |  1.000000e+00 |  6.049822e-02 |   1.252157e-01 |          2048 |
|  LBFGS |      1 |            8 |  2.972144e-01 |  1.000000e+00 |  7.117438e-03 |   5.796240e-02 |          2048 |
|  LBFGS |      1 |            9 |  2.837450e-01 |  1.000000e+00 |  8.185053e-02 |   1.484733e-01 |          2048 |
|  LBFGS |      1 |           10 |  2.797642e-01 |  1.000000e+00 |  3.558719e-02 |   5.856842e-02 |          2048 |
|  LBFGS |      1 |           11 |  2.771280e-01 |  1.000000e+00 |  2.846975e-02 |   2.349433e-02 |          2048 |
|  LBFGS |      1 |           12 |  2.741570e-01 |  1.000000e+00 |  3.914591e-02 |   3.113194e-02 |          2048 |
|  LBFGS |      1 |           13 |  2.725701e-01 |  5.000000e-01 |  1.067616e-01 |   8.729821e-02 |          2048 |
|  LBFGS |      1 |           14 |  2.667147e-01 |  1.000000e+00 |  3.914591e-02 |   3.491723e-02 |          2048 |
|  LBFGS |      1 |           15 |  2.621152e-01 |  1.000000e+00 |  7.117438e-03 |   5.104726e-02 |          2048 |
|  LBFGS |      1 |           16 |  2.601652e-01 |  1.000000e+00 |  3.558719e-02 |   3.764904e-02 |          2048 |
|  LBFGS |      1 |           17 |  2.589052e-01 |  1.000000e+00 |  3.202847e-02 |   3.655744e-02 |          2048 |
|  LBFGS |      1 |           18 |  2.583185e-01 |  1.000000e+00 |  7.117438e-03 |   6.490571e-02 |          2048 |
|  LBFGS |      1 |           19 |  2.556482e-01 |  1.000000e+00 |  9.252669e-02 |   4.601390e-02 |          2048 |
|  LBFGS |      1 |           20 |  2.542643e-01 |  1.000000e+00 |  7.117438e-02 |   4.141838e-02 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           21 |  2.532117e-01 |  1.000000e+00 |  1.067616e-02 |   1.661720e-02 |          2048 |
|  LBFGS |      1 |           22 |  2.529890e-01 |  1.000000e+00 |  2.135231e-02 |   1.231678e-02 |          2048 |
|  LBFGS |      1 |           23 |  2.523232e-01 |  1.000000e+00 |  3.202847e-02 |   1.958586e-02 |          2048 |
|  LBFGS |      1 |           24 |  2.506736e-01 |  1.000000e+00 |  1.779359e-02 |   2.474613e-02 |          2048 |
|  LBFGS |      1 |           25 |  2.501995e-01 |  1.000000e+00 |  1.779359e-02 |   2.514352e-02 |          2048 |
|  LBFGS |      1 |           26 |  2.488242e-01 |  1.000000e+00 |  3.558719e-03 |   1.531810e-02 |          2048 |
|  LBFGS |      1 |           27 |  2.485295e-01 |  5.000000e-01 |  3.202847e-02 |   1.229760e-02 |          2048 |
|  LBFGS |      1 |           28 |  2.482244e-01 |  1.000000e+00 |  4.270463e-02 |   8.970983e-03 |          2048 |
|  LBFGS |      1 |           29 |  2.479714e-01 |  1.000000e+00 |  3.558719e-03 |   7.393900e-03 |          2048 |
|  LBFGS |      1 |           30 |  2.477316e-01 |  1.000000e+00 |  3.202847e-02 |   3.268087e-03 |          2048 |
|  LBFGS |      1 |           31 |  2.476178e-01 |  2.500000e-01 |  3.202847e-02 |   5.445890e-03 |          2048 |
|  LBFGS |      1 |           32 |  2.474874e-01 |  1.000000e+00 |  1.779359e-02 |   3.535903e-03 |          2048 |
|  LBFGS |      1 |           33 |  2.473980e-01 |  1.000000e+00 |  7.117438e-03 |   2.821725e-03 |          2048 |
|  LBFGS |      1 |           34 |  2.472935e-01 |  1.000000e+00 |  3.558719e-03 |   2.699880e-03 |          2048 |
|  LBFGS |      1 |           35 |  2.471418e-01 |  1.000000e+00 |  3.558719e-03 |   1.242523e-02 |          2048 |
|  LBFGS |      1 |           36 |  2.469862e-01 |  1.000000e+00 |  2.846975e-02 |   7.895605e-03 |          2048 |
|  LBFGS |      1 |           37 |  2.469598e-01 |  1.000000e+00 |  2.135231e-02 |   6.657676e-03 |          2048 |
|  LBFGS |      1 |           38 |  2.466941e-01 |  1.000000e+00 |  3.558719e-02 |   4.654690e-03 |          2048 |
|  LBFGS |      1 |           39 |  2.466660e-01 |  5.000000e-01 |  1.423488e-02 |   2.885769e-03 |          2048 |
|  LBFGS |      1 |           40 |  2.465605e-01 |  1.000000e+00 |  3.558719e-03 |   4.562565e-03 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           41 |  2.465362e-01 |  1.000000e+00 |  1.423488e-02 |   5.652180e-03 |          2048 |
|  LBFGS |      1 |           42 |  2.463528e-01 |  1.000000e+00 |  3.558719e-03 |   2.389759e-03 |          2048 |
|  LBFGS |      1 |           43 |  2.463207e-01 |  1.000000e+00 |  1.511170e-03 |   3.738286e-03 |          2048 |
|  LBFGS |      1 |           44 |  2.462585e-01 |  5.000000e-01 |  7.117438e-02 |   2.321693e-03 |          2048 |
|  LBFGS |      1 |           45 |  2.461742e-01 |  1.000000e+00 |  7.117438e-03 |   2.599725e-03 |          2048 |
|  LBFGS |      1 |           46 |  2.461434e-01 |  1.000000e+00 |  3.202847e-02 |   3.186923e-03 |          2048 |
|  LBFGS |      1 |           47 |  2.461115e-01 |  1.000000e+00 |  7.117438e-03 |   1.530711e-03 |          2048 |
|  LBFGS |      1 |           48 |  2.460814e-01 |  1.000000e+00 |  1.067616e-02 |   1.811714e-03 |          2048 |
|  LBFGS |      1 |           49 |  2.460533e-01 |  5.000000e-01 |  1.423488e-02 |   1.012252e-03 |          2048 |
|  LBFGS |      1 |           50 |  2.460111e-01 |  1.000000e+00 |  1.423488e-02 |   4.166762e-03 |          2048 |
|  LBFGS |      1 |           51 |  2.459414e-01 |  1.000000e+00 |  1.067616e-02 |   3.271946e-03 |          2048 |
|  LBFGS |      1 |           52 |  2.458809e-01 |  1.000000e+00 |  1.423488e-02 |   1.846440e-03 |          2048 |
|  LBFGS |      1 |           53 |  2.458479e-01 |  1.000000e+00 |  1.067616e-02 |   1.180871e-03 |          2048 |
|  LBFGS |      1 |           54 |  2.458146e-01 |  1.000000e+00 |  1.455008e-03 |   1.422954e-03 |          2048 |
|  LBFGS |      1 |           55 |  2.457878e-01 |  1.000000e+00 |  7.117438e-03 |   1.880892e-03 |          2048 |
|  LBFGS |      1 |           56 |  2.457519e-01 |  1.000000e+00 |  2.491103e-02 |   1.074764e-03 |          2048 |
|  LBFGS |      1 |           57 |  2.457420e-01 |  1.000000e+00 |  7.473310e-02 |   9.511878e-04 |          2048 |
|  LBFGS |      1 |           58 |  2.457212e-01 |  1.000000e+00 |  3.558719e-03 |   3.718564e-04 |          2048 |
|  LBFGS |      1 |           59 |  2.457089e-01 |  1.000000e+00 |  4.270463e-02 |   6.237270e-04 |          2048 |
|  LBFGS |      1 |           60 |  2.457047e-01 |  5.000000e-01 |  1.423488e-02 |   3.647573e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           61 |  2.456991e-01 |  1.000000e+00 |  1.423488e-02 |   5.666884e-04 |          2048 |
|  LBFGS |      1 |           62 |  2.456898e-01 |  1.000000e+00 |  1.779359e-02 |   4.697056e-04 |          2048 |
|  LBFGS |      1 |           63 |  2.456792e-01 |  1.000000e+00 |  1.779359e-02 |   5.984927e-04 |          2048 |
|  LBFGS |      1 |           64 |  2.456603e-01 |  1.000000e+00 |  1.403782e-03 |   5.414985e-04 |          2048 |
|  LBFGS |      1 |           65 |  2.456482e-01 |  1.000000e+00 |  3.558719e-03 |   6.506293e-04 |          2048 |
|  LBFGS |      1 |           66 |  2.456358e-01 |  1.000000e+00 |  1.476262e-03 |   1.284139e-03 |          2048 |
|  LBFGS |      1 |           67 |  2.456124e-01 |  1.000000e+00 |  3.558719e-03 |   8.636596e-04 |          2048 |
|  LBFGS |      1 |           68 |  2.455980e-01 |  1.000000e+00 |  1.067616e-02 |   9.861527e-04 |          2048 |
|  LBFGS |      1 |           69 |  2.455780e-01 |  1.000000e+00 |  1.067616e-02 |   5.102487e-04 |          2048 |
|  LBFGS |      1 |           70 |  2.455633e-01 |  1.000000e+00 |  3.558719e-03 |   1.228077e-03 |          2048 |
|  LBFGS |      1 |           71 |  2.455449e-01 |  1.000000e+00 |  1.423488e-02 |   7.864590e-04 |          2048 |
|  LBFGS |      1 |           72 |  2.455261e-01 |  1.000000e+00 |  3.558719e-02 |   1.090815e-03 |          2048 |
|  LBFGS |      1 |           73 |  2.455142e-01 |  1.000000e+00 |  1.067616e-02 |   1.701506e-03 |          2048 |
|  LBFGS |      1 |           74 |  2.455075e-01 |  1.000000e+00 |  1.779359e-02 |   1.504577e-03 |          2048 |
|  LBFGS |      1 |           75 |  2.455008e-01 |  1.000000e+00 |  3.914591e-02 |   1.144021e-03 |          2048 |
|  LBFGS |      1 |           76 |  2.454943e-01 |  1.000000e+00 |  2.491103e-02 |   3.015254e-04 |          2048 |
|  LBFGS |      1 |           77 |  2.454918e-01 |  5.000000e-01 |  3.202847e-02 |   9.837523e-04 |          2048 |
|  LBFGS |      1 |           78 |  2.454870e-01 |  1.000000e+00 |  1.779359e-02 |   4.328953e-04 |          2048 |
|  LBFGS |      1 |           79 |  2.454865e-01 |  5.000000e-01 |  3.558719e-03 |   7.126815e-04 |          2048 |
|  LBFGS |      1 |           80 |  2.454775e-01 |  1.000000e+00 |  5.693950e-02 |   8.992562e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           81 |  2.454686e-01 |  1.000000e+00 |  1.183730e-03 |   1.590246e-04 |          2048 |
|  LBFGS |      1 |           82 |  2.454612e-01 |  1.000000e+00 |  2.135231e-02 |   1.389570e-04 |          2048 |
|  LBFGS |      1 |           83 |  2.454506e-01 |  1.000000e+00 |  3.558719e-03 |   6.162089e-04 |          2048 |
|  LBFGS |      1 |           84 |  2.454436e-01 |  1.000000e+00 |  1.423488e-02 |   1.877414e-03 |          2048 |
|  LBFGS |      1 |           85 |  2.454378e-01 |  1.000000e+00 |  1.423488e-02 |   3.370852e-04 |          2048 |
|  LBFGS |      1 |           86 |  2.454249e-01 |  1.000000e+00 |  1.423488e-02 |   8.133615e-04 |          2048 |
|  LBFGS |      1 |           87 |  2.454101e-01 |  1.000000e+00 |  1.067616e-02 |   3.872088e-04 |          2048 |
|  LBFGS |      1 |           88 |  2.453963e-01 |  1.000000e+00 |  1.779359e-02 |   5.670260e-04 |          2048 |
|  LBFGS |      1 |           89 |  2.453866e-01 |  1.000000e+00 |  1.067616e-02 |   1.444984e-03 |          2048 |
|  LBFGS |      1 |           90 |  2.453821e-01 |  1.000000e+00 |  7.117438e-03 |   2.457270e-03 |          2048 |
|  LBFGS |      1 |           91 |  2.453790e-01 |  5.000000e-01 |  6.761566e-02 |   8.228766e-04 |          2048 |
|  LBFGS |      1 |           92 |  2.453603e-01 |  1.000000e+00 |  2.135231e-02 |   1.084233e-03 |          2048 |
|  LBFGS |      1 |           93 |  2.453540e-01 |  1.000000e+00 |  2.135231e-02 |   2.060005e-04 |          2048 |
|  LBFGS |      1 |           94 |  2.453482e-01 |  1.000000e+00 |  1.779359e-02 |   1.560883e-04 |          2048 |
|  LBFGS |      1 |           95 |  2.453461e-01 |  1.000000e+00 |  1.779359e-02 |   1.614693e-03 |          2048 |
|  LBFGS |      1 |           96 |  2.453371e-01 |  1.000000e+00 |  3.558719e-02 |   2.145835e-04 |          2048 |
|  LBFGS |      1 |           97 |  2.453305e-01 |  1.000000e+00 |  4.270463e-02 |   7.602088e-04 |          2048 |
|  LBFGS |      1 |           98 |  2.453283e-01 |  2.500000e-01 |  2.135231e-02 |   3.422253e-04 |          2048 |
|  LBFGS |      1 |           99 |  2.453246e-01 |  1.000000e+00 |  3.558719e-03 |   3.872561e-04 |          2048 |
|  LBFGS |      1 |          100 |  2.453214e-01 |  1.000000e+00 |  3.202847e-02 |   1.732237e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |          101 |  2.453168e-01 |  1.000000e+00 |  1.067616e-02 |   3.065286e-04 |          2048 |
|  LBFGS |      1 |          102 |  2.453155e-01 |  5.000000e-01 |  4.626335e-02 |   3.402368e-04 |          2048 |
|  LBFGS |      1 |          103 |  2.453136e-01 |  1.000000e+00 |  1.779359e-02 |   2.215029e-04 |          2048 |
|  LBFGS |      1 |          104 |  2.453119e-01 |  1.000000e+00 |  3.202847e-02 |   4.142355e-04 |          2048 |
|  LBFGS |      1 |          105 |  2.453093e-01 |  1.000000e+00 |  1.423488e-02 |   2.186007e-04 |          2048 |
|  LBFGS |      1 |          106 |  2.453090e-01 |  1.000000e+00 |  2.846975e-02 |   1.338602e-03 |          2048 |
|  LBFGS |      1 |          107 |  2.453048e-01 |  1.000000e+00 |  1.423488e-02 |   3.208296e-04 |          2048 |
|  LBFGS |      1 |          108 |  2.453040e-01 |  1.000000e+00 |  3.558719e-02 |   1.294488e-03 |          2048 |
|  LBFGS |      1 |          109 |  2.452977e-01 |  1.000000e+00 |  1.423488e-02 |   8.328380e-04 |          2048 |
|  LBFGS |      1 |          110 |  2.452934e-01 |  1.000000e+00 |  2.135231e-02 |   5.149259e-04 |          2048 |
|  LBFGS |      1 |          111 |  2.452886e-01 |  1.000000e+00 |  1.779359e-02 |   3.650664e-04 |          2048 |
|  LBFGS |      1 |          112 |  2.452854e-01 |  1.000000e+00 |  1.067616e-02 |   2.633981e-04 |          2048 |
|  LBFGS |      1 |          113 |  2.452836e-01 |  1.000000e+00 |  1.067616e-02 |   1.804300e-04 |          2048 |
|  LBFGS |      1 |          114 |  2.452817e-01 |  1.000000e+00 |  7.117438e-03 |   4.251642e-04 |          2048 |
|  LBFGS |      1 |          115 |  2.452741e-01 |  1.000000e+00 |  1.779359e-02 |   9.018440e-04 |          2048 |
|  LBFGS |      1 |          116 |  2.452691e-01 |  1.000000e+00 |  2.135231e-02 |   9.941716e-05 |          2048 |
|=================================================================================================================|

Спрогнозируйте метки набора тестов, создайте матрицу неточностей для тестового набора и оцените ошибку классификации для тестового набора.

UpdatedLabel = predict(UpdatedMdl,XTest);
UpdatedConfusionTest = confusionchart(YTest,UpdatedLabel);

Figure contains an object of type ConfusionMatrixChart.

UpdatedL = loss(UpdatedMdl,XTest,YTest)
UpdatedL = 0.1284

Ошибка классификации уменьшается после resume обновляет классификационную модель с помощью дополнительных итераций.

Введенный в R2017b
Для просмотра документации необходимо авторизоваться на сайте