Загрузите выборочные данные.
Эти моделируемые данные получены от производственной компании, которая управляет 50 заводами по всему миру, причем каждый завод выполняет пакетный процесс для создания готового продукта. Компания хочет уменьшить количество дефектов в каждой партии, поэтому разработала новый производственный процесс. Чтобы проверить эффективность нового процесса, компания выбрала 20 своих фабрик наугад для участия в эксперименте: Десять фабрик реализовали новый процесс, а другие десять продолжали запускать старый процесс. На каждом из 20 заводов компания запустила пять партий (в общей сложности 100 партий) и записала следующие данные:
Флаг, указывающий, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждой партии, в часах (time
)
Температура партии, в степенях Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
, B
, или C
) химического вещества, используемого в партии (supplier
)
Количество дефектов в партии (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, от стандарта процесса в 3 часа при 20 степенях Цельсии.
Подбор обобщенной линейной модели смешанных эффектов с помощью newprocess
, time_dev
, temp_dev
, и supplier
как предикторы фиксированных эффектов. Включите термин случайных эффектов для точки пересечения, сгруппированного по factory
, для расчета различий в качестве, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является логарифмической. Используйте метод Laplace fit, чтобы оценить коэффициенты. Задайте кодировку фиктивной переменной следующим 'effects'
, поэтому фиктивные переменные коэффициенты равны 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной модели линейных смешанных эффектов
где
количество дефектов, наблюдаемых в партии, произведенной заводом-изготовителем во время партии .
- среднее количество дефектов, соответствующих заводу (где ) во время партии (где ).
, , и являются измерениями для каждой переменной, которые соответствуют фабрике во время партии . Для примера, указывает, производится ли партия заводом-изготовителем во время партии использовали новый процесс.
и являются фиктивными переменными, которые используют эффекты (сумма к нулю) кодирования, чтобы указать, является ли компания C
или B
, соответственно, поставила химикаты для партии, произведенной заводом во время партии .
является точка пересечения случайных эффектов для каждого завода который учитывает специфические для завода изменения в качестве.
glme =
Generalized linear mixed-effects model fit by ML
Model information:
Number of observations 100
Fixed effects coefficients 6
Random effects coefficients 20
Covariance parameters 1
Distribution Poisson
Link Log
FitMethod Laplace
Formula:
defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)
Model fit statistics:
AIC BIC LogLikelihood Deviance
416.35 434.58 -201.17 402.35
Fixed effects coefficients (95% CIs):
Name Estimate SE tStat DF pValue
{'(Intercept)'} 1.4689 0.15988 9.1875 94 9.8194e-15
{'newprocess' } -0.36766 0.17755 -2.0708 94 0.041122
{'time_dev' } -0.094521 0.82849 -0.11409 94 0.90941
{'temp_dev' } -0.28317 0.9617 -0.29444 94 0.76907
{'supplier_C' } -0.071868 0.078024 -0.9211 94 0.35936
{'supplier_B' } 0.071072 0.07739 0.91836 94 0.36078
Lower Upper
1.1515 1.7864
-0.72019 -0.015134
-1.7395 1.5505
-2.1926 1.6263
-0.22679 0.083051
-0.082588 0.22473
Random effects covariance parameters:
Group: factory (20 Levels)
Name1 Name2 Type Estimate
{'(Intercept)'} {'(Intercept)'} {'std'} 0.31381
Group: Error
Name Estimate
{'sqrt(Dispersion)'} 1
Выполните -test, чтобы определить, равны ли все коэффициенты с фиксированными эффектами 0.
stats =
ANOVA marginal tests: DFMethod = 'residual'
Term FStat DF1 DF2 pValue
{'(Intercept)'} 84.41 1 94 9.8194e-15
{'newprocess' } 4.2881 1 94 0.041122
{'time_dev' } 0.013016 1 94 0.90941
{'temp_dev' } 0.086696 1 94 0.76907
{'supplier' } 0.59212 2 94 0.5552
-значения для точки пересечения, newprocess
, time_dev
, и temp_dev
те же, что и в таблице коэффициентов glme
отображение. Маленькое -значения для точки пересечения и newprocess
указывают, что это значительные предикторы на уровне 5% значимости. Большое -значения для time_dev
и temp_dev
указывают, что это не значимые предикторы на этом уровне.
-значение 0,5552 для supplier
измеряет совокупную значимость для обоих коэффициентов, представляющих категориальную переменную supplier
. Сюда входят фиктивные переменные supplier_C
и supplier_B
как показано в таблице коэффициентов glme
отображение. Большое -значение указывает, что supplier
не является значимым предиктором на уровне 5% значимости.