disp

Класс: GeneralizedLinearMixedModel

Отобразите обобщенную модель линейных смешанных эффектов

Синтаксис

Описание

пример

disp(glme) отображает подобранную обобщенную линейную модель смешанных эффектов glme.

Входные параметры

расширить все

Обобщенная модель линейных смешанных эффектов, заданная как GeneralizedLinearMixedModel объект. Для свойств и методов этого объекта смотрите GeneralizedLinearMixedModel.

Примеры

расширить все

Загрузите выборочные данные.

load mfr

Эти моделируемые данные получены от производственной компании, которая управляет 50 заводами по всему миру, причем каждый завод выполняет пакетный процесс для создания готового продукта. Компания хочет уменьшить количество дефектов в каждой партии, поэтому разработала новый производственный процесс. Чтобы проверить эффективность нового процесса, компания выбрала 20 своих фабрик наугад для участия в эксперименте: Десять фабрик реализовали новый процесс, а другие десять продолжали запускать старый процесс. На каждом из 20 заводов компания запустила пять партий (в общей сложности 100 партий) и записала следующие данные:

  • Флаг, указывающий, использовал ли пакет новый процесс (newprocess)

  • Время вычислений для каждой партии, в часах (time)

  • Температура партии, в степенях Цельсия (temp)

  • Категориальная переменная, указывающая поставщика химического вещества, используемого в партии (supplier)

  • Количество дефектов в партии (defects)

Данные также включают time_dev и temp_dev, которые представляют абсолютное отклонение времени и температуры, соответственно, от стандарта процесса в 3 часа при 20 степенях Цельсии.

Подбор обобщенной линейной модели смешанных эффектов с помощью newprocess, time_dev, temp_dev, и supplier как предикторы фиксированных эффектов. Включите термин случайных эффектов для точки пересечения, сгруппированного по factory, для расчета различий в качестве, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является логарифмической. Используйте метод Laplace fit, чтобы оценить коэффициенты. Задайте кодировку фиктивной переменной следующим 'effects', поэтому фиктивные переменные коэффициенты равны 0.

Количество дефектов может быть смоделировано с помощью распределения Пуассона

defectsijПуассон(μij)

Это соответствует обобщенной модели линейных смешанных эффектов

log(μij)=β0+β1newprocessij+β2time_devij+β3temp_devij+β4supplier_Cij+β5supplier_Bij+bi,

где

  • defectsij количество дефектов, наблюдаемых в партии, произведенной заводом-изготовителем i во время партии j.

  • μij - среднее количество дефектов, соответствующих заводу i (где i=1,2,...,20) во время партии j (где j=1,2,...,5).

  • newprocessij, time_devij, и temp_devij являются измерениями для каждой переменной, которые соответствуют фабрике i во время партии j. Для примера, newprocessij указывает, производится ли партия заводом-изготовителем i во время партии j использовали новый процесс.

  • supplier_Cij и supplier_Bij являются фиктивными переменными, которые используют эффекты (сумма к нулю) кодирования, чтобы указать, является ли компания C или B, соответственно, поставила химикаты для партии, произведенной заводом i во время партии j.

  • biN(0,σb2) является точка пересечения случайных эффектов для каждого завода i который учитывает специфические для завода изменения в качестве.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Отобразите модель.

disp(glme)
Generalized linear mixed-effects model fit by ML

Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    416.35    434.58    -201.17          402.35  

Fixed effects coefficients (95% CIs):
    Name                   Estimate     SE          tStat       DF    pValue    
    {'(Intercept)'}           1.4689     0.15988      9.1875    94    9.8194e-15
    {'newprocess' }         -0.36766     0.17755     -2.0708    94      0.041122
    {'time_dev'   }        -0.094521     0.82849    -0.11409    94       0.90941
    {'temp_dev'   }         -0.28317      0.9617    -0.29444    94       0.76907
    {'supplier_C' }        -0.071868    0.078024     -0.9211    94       0.35936
    {'supplier_B' }         0.071072     0.07739     0.91836    94       0.36078


    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473

Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.31381 

Group: Error
    Name                        Estimate
    {'sqrt(Dispersion)'}        1       

The Model information таблица отображает общее количество наблюдений в выборочных данных (100), количество коэффициентов фиксированных и случайных эффектов (6 и 20, соответственно) и количество ковариационных параметров (1). Это также указывает, что переменная отклика имеет Poisson распределение, функция ссылки Log, и метод подгонки Laplace.

Formula указывает спецификацию модели, использующую обозначение Уилкинсона.

The Model fit statistics таблица отображает статистику, используемую для оценки качества подгонки модели. Это включает информационный критерий Акаике (AIC), байесовский информационный критерий (BIC) значения, журнал правдоподобия (LogLikelihood), и отклонение (Deviance) значения.

The Fixed effects coefficients таблица указывает, что fitglme возвращено 95% доверительных интервалов. Он содержит одну строку для каждого предиктора фиксированных эффектов, и каждый столбец содержит статистику, соответствующую этому предиктору. Столбец 1 (Name) содержит имя каждого коэффициента с фиксированными эффектами, столбец 2 (Estimate) содержит его расчетное значение и столбец 3 (SE) содержит стандартную ошибку коэффициента. Столбец 4 (tStat) содержит t-statistic для проверки гипотезы, что коэффициент равен 0. Столбец 5 (DF) и столбец 6 (pValue) содержат степени свободы и p-значение, которое соответствует t-статистический, соответственно. Последние два столбца (Lower и Upper) отображать нижний и верхний пределы, соответственно, 95% доверительного интервала для каждого коэффициента фиксированных эффектов.

Random effects covariance parameters отображает таблицу для каждой сгруппированной переменной (только здесь factory), включая его общее количество уровней (20), и тип и оценку ковариационного параметра. Здесь, std указывает, что fitglme возвращает стандартное отклонение случайного эффекта, сопоставленного с заводским предиктором, которое имеет оценочное значение 0,31381. В нем также отображается таблица, содержащая тип параметра ошибки (здесь квадратный корень параметра дисперсии) и его предполагаемое значение 1.

Стандартное отображение, сгенерированный fitglme не предоставляет доверительные интервалы для параметров случайных эффектов. Чтобы вычислить и отобразить эти значения, используйте covarianceParameters.

Подробнее о

расширить все