Статистика сводных данных распределения Байесовой векторной модели (VAR) авторегрессии
summarize(
отображения, в командной строке, табличных сводных данных коэффициентов модели Bayesian VAR (p)
Mdl
)Mdl
, и инновационная ковариационная матрица. Сводные данные включают средние значения и стандартные отклонения распределения Mdl
представляет.
Рассмотрите 3-D модель VAR (4) для инфляции США (INFL
), безработица (UNRATE
), и федеральные фонды (FEDFUNDS
) уровни.
\forall , серия независимых 3-D нормальных инноваций со средним значением 0 и ковариация . Примите что предшествующее распределение управляет поведением параметров. Рассмотрите использование Миннесотской регуляризации, чтобы получить экономное представление содействующего апостериорного распределения.
Для каждого поддерживаемого предшествующего предположения создайте соответствующий Байесов VAR (4) объект модели для этих трех переменных отклика при помощи bayesvarm
. Для каждой модели, которая поддерживает опцию, задайте все следующее.
Имена переменной отклика.
Предшествующие коэффициенты самозадержки имеют отклонение 100. Эта установка большого отклонения позволяет данным влиять на следующие больше, чем предшествующее.
Предшествующие коэффициенты перекрестной задержки имеют отклонение 1. Эта установка маленького отклонения сжимает коэффициенты перекрестной задержки, чтобы обнулить во время оценки.
Предшествующее содействующее затухание ковариаций с увеличивающейся задержкой на уровне 2 (то есть, более низкие задержки более важны, чем большие задержки).
Для нормальной сопряженной предшествующей модели примите, что инновационная ковариация является 3-D единичной матрицей.
seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; numseries = numel(seriesnames); numlags = 4; DiffusePriorMdl = bayesvarm(numseries,numlags,'SeriesNames',seriesnames); ConjugatePriorMdl = bayesvarm(numseries,numlags,'ModelType','conjugate',... 'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'Decay',2); SemiConjugatePriorMdl = bayesvarm(numseries,numlags,'ModelType','semiconjugate',... 'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'CrossLag',1,'Decay',2); NormalPriorMdl = bayesvarm(numseries,numlags,'ModelType','normal',... 'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'CrossLag',1,'Decay',2,... 'Sigma',eye(numseries));
Для каждой модели отобразите сводные данные предшествующего распределения.
summarize(DiffusePriorMdl)
| Mean Std ------------------------- Constant(1) | 0 Inf Constant(2) | 0 Inf Constant(3) | 0 Inf AR{1}(1,1) | 0 Inf AR{1}(2,1) | 0 Inf AR{1}(3,1) | 0 Inf AR{1}(1,2) | 0 Inf AR{1}(2,2) | 0 Inf AR{1}(3,2) | 0 Inf AR{1}(1,3) | 0 Inf AR{1}(2,3) | 0 Inf AR{1}(3,3) | 0 Inf AR{2}(1,1) | 0 Inf AR{2}(2,1) | 0 Inf AR{2}(3,1) | 0 Inf AR{2}(1,2) | 0 Inf AR{2}(2,2) | 0 Inf AR{2}(3,2) | 0 Inf AR{2}(1,3) | 0 Inf AR{2}(2,3) | 0 Inf AR{2}(3,3) | 0 Inf AR{3}(1,1) | 0 Inf AR{3}(2,1) | 0 Inf AR{3}(3,1) | 0 Inf AR{3}(1,2) | 0 Inf AR{3}(2,2) | 0 Inf AR{3}(3,2) | 0 Inf AR{3}(1,3) | 0 Inf AR{3}(2,3) | 0 Inf AR{3}(3,3) | 0 Inf AR{4}(1,1) | 0 Inf AR{4}(2,1) | 0 Inf AR{4}(3,1) | 0 Inf AR{4}(1,2) | 0 Inf AR{4}(2,2) | 0 Inf AR{4}(3,2) | 0 Inf AR{4}(1,3) | 0 Inf AR{4}(2,3) | 0 Inf AR{4}(3,3) | 0 Inf Innovations Covariance Matrix | INFL UNRATE FEDFUNDS ------------------------------------ INFL | NaN NaN NaN | (NaN) (NaN) (NaN) UNRATE | NaN NaN NaN | (NaN) (NaN) (NaN) FEDFUNDS | NaN NaN NaN | (NaN) (NaN) (NaN)
Рассейте предшествующие модели помещенный равный вес на всех коэффициентах модели. Эта спецификация позволяет данным определять апостериорное распределение.
summarize(ConjugatePriorMdl)
| Mean Std ------------------------------- Constant(1) | 0 33.3333 Constant(2) | 0 33.3333 Constant(3) | 0 33.3333 AR{1}(1,1) | 0.7500 3.3333 AR{1}(2,1) | 0 3.3333 AR{1}(3,1) | 0 3.3333 AR{1}(1,2) | 0 3.3333 AR{1}(2,2) | 0.7500 3.3333 AR{1}(3,2) | 0 3.3333 AR{1}(1,3) | 0 3.3333 AR{1}(2,3) | 0 3.3333 AR{1}(3,3) | 0.7500 3.3333 AR{2}(1,1) | 0 1.6667 AR{2}(2,1) | 0 1.6667 AR{2}(3,1) | 0 1.6667 AR{2}(1,2) | 0 1.6667 AR{2}(2,2) | 0 1.6667 AR{2}(3,2) | 0 1.6667 AR{2}(1,3) | 0 1.6667 AR{2}(2,3) | 0 1.6667 AR{2}(3,3) | 0 1.6667 AR{3}(1,1) | 0 1.1111 AR{3}(2,1) | 0 1.1111 AR{3}(3,1) | 0 1.1111 AR{3}(1,2) | 0 1.1111 AR{3}(2,2) | 0 1.1111 AR{3}(3,2) | 0 1.1111 AR{3}(1,3) | 0 1.1111 AR{3}(2,3) | 0 1.1111 AR{3}(3,3) | 0 1.1111 AR{4}(1,1) | 0 0.8333 AR{4}(2,1) | 0 0.8333 AR{4}(3,1) | 0 0.8333 AR{4}(1,2) | 0 0.8333 AR{4}(2,2) | 0 0.8333 AR{4}(3,2) | 0 0.8333 AR{4}(1,3) | 0 0.8333 AR{4}(2,3) | 0 0.8333 AR{4}(3,3) | 0 0.8333 Innovations Covariance Matrix | INFL UNRATE FEDFUNDS ----------------------------------------- INFL | 0.1111 0 0 | (0.0594) (0.0398) (0.0398) UNRATE | 0 0.1111 0 | (0.0398) (0.0594) (0.0398) FEDFUNDS | 0 0 0.1111 | (0.0398) (0.0398) (0.0594)
С более высоким предшествующим отклонением приблизительно 0 для больших задержек следующая из сопряженной модели, вероятно, будет более разреженной что следующая из рассеянной модели.
summarize(SemiConjugatePriorMdl)
| Mean Std ------------------------------ Constant(1) | 0 100 Constant(2) | 0 100 Constant(3) | 0 100 AR{1}(1,1) | 0.7500 10 AR{1}(2,1) | 0 1 AR{1}(3,1) | 0 1 AR{1}(1,2) | 0 1 AR{1}(2,2) | 0.7500 10 AR{1}(3,2) | 0 1 AR{1}(1,3) | 0 1 AR{1}(2,3) | 0 1 AR{1}(3,3) | 0.7500 10 AR{2}(1,1) | 0 5 AR{2}(2,1) | 0 0.5000 AR{2}(3,1) | 0 0.5000 AR{2}(1,2) | 0 0.5000 AR{2}(2,2) | 0 5 AR{2}(3,2) | 0 0.5000 AR{2}(1,3) | 0 0.5000 AR{2}(2,3) | 0 0.5000 AR{2}(3,3) | 0 5 AR{3}(1,1) | 0 3.3333 AR{3}(2,1) | 0 0.3333 AR{3}(3,1) | 0 0.3333 AR{3}(1,2) | 0 0.3333 AR{3}(2,2) | 0 3.3333 AR{3}(3,2) | 0 0.3333 AR{3}(1,3) | 0 0.3333 AR{3}(2,3) | 0 0.3333 AR{3}(3,3) | 0 3.3333 AR{4}(1,1) | 0 2.5000 AR{4}(2,1) | 0 0.2500 AR{4}(3,1) | 0 0.2500 AR{4}(1,2) | 0 0.2500 AR{4}(2,2) | 0 2.5000 AR{4}(3,2) | 0 0.2500 AR{4}(1,3) | 0 0.2500 AR{4}(2,3) | 0 0.2500 AR{4}(3,3) | 0 2.5000 Innovations Covariance Matrix | INFL UNRATE FEDFUNDS ----------------------------------------- INFL | 0.1111 0 0 | (0.0594) (0.0398) (0.0398) UNRATE | 0 0.1111 0 | (0.0398) (0.0594) (0.0398) FEDFUNDS | 0 0 0.1111 | (0.0398) (0.0398) (0.0594)
summarize(NormalPriorMdl)
| Mean Std ------------------------------ Constant(1) | 0 100 Constant(2) | 0 100 Constant(3) | 0 100 AR{1}(1,1) | 0.7500 10 AR{1}(2,1) | 0 1 AR{1}(3,1) | 0 1 AR{1}(1,2) | 0 1 AR{1}(2,2) | 0.7500 10 AR{1}(3,2) | 0 1 AR{1}(1,3) | 0 1 AR{1}(2,3) | 0 1 AR{1}(3,3) | 0.7500 10 AR{2}(1,1) | 0 5 AR{2}(2,1) | 0 0.5000 AR{2}(3,1) | 0 0.5000 AR{2}(1,2) | 0 0.5000 AR{2}(2,2) | 0 5 AR{2}(3,2) | 0 0.5000 AR{2}(1,3) | 0 0.5000 AR{2}(2,3) | 0 0.5000 AR{2}(3,3) | 0 5 AR{3}(1,1) | 0 3.3333 AR{3}(2,1) | 0 0.3333 AR{3}(3,1) | 0 0.3333 AR{3}(1,2) | 0 0.3333 AR{3}(2,2) | 0 3.3333 AR{3}(3,2) | 0 0.3333 AR{3}(1,3) | 0 0.3333 AR{3}(2,3) | 0 0.3333 AR{3}(3,3) | 0 3.3333 AR{4}(1,1) | 0 2.5000 AR{4}(2,1) | 0 0.2500 AR{4}(3,1) | 0 0.2500 AR{4}(1,2) | 0 0.2500 AR{4}(2,2) | 0 2.5000 AR{4}(3,2) | 0 0.2500 AR{4}(1,3) | 0 0.2500 AR{4}(2,3) | 0 0.2500 AR{4}(3,3) | 0 2.5000 Innovations Covariance Matrix | INFL UNRATE FEDFUNDS ----------------------------------- INFL | 1 0 0 | (0) (0) (0) UNRATE | 0 1 0 | (0) (0) (0) FEDFUNDS | 0 0 1 | (0) (0) (0)
Полусопряженные и нормальные сопряженные предшествующие модели дают к более богатой предшествующей спецификации, чем сопряженные и рассеянные модели.
Полагайте, что 3-D модель VAR (4) Смотрит Миннесоту Предшествующие Предположения Среди Моделей. Примите, что предшествующее распределение является рассеянным.
Загрузите США макроэкономический набор данных. Вычислите уровень инфляции, стабилизируйте показатели безработицы и ставки по федеральным фондам, и удалите отсутствующие значения.
load Data_USEconModel seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; DataTable.INFL = 100*[NaN; price2ret(DataTable.CPIAUCSL)]; DataTable.DUNRATE = [NaN; diff(DataTable.UNRATE)]; DataTable.DFEDFUNDS = [NaN; diff(DataTable.FEDFUNDS)]; seriesnames(2:3) = "D" + seriesnames(2:3); rmDataTable = rmmissing(DataTable);
Создайте рассеянный Байесов VAR (4) предшествующая модель для трех рядов ответа. Задайте имена переменной отклика.
numseries = numel(seriesnames);
numlags = 4;
PriorMdl = bayesvarm(numseries,numlags,'SeriesNames',seriesnames);
Оцените апостериорное распределение.
PosteriorMdl = estimate(PriorMdl,rmDataTable{:,seriesnames});
Bayesian VAR under diffuse priors Effective Sample Size: 197 Number of equations: 3 Number of estimated Parameters: 39 | Mean Std ------------------------------- Constant(1) | 0.1007 0.0832 Constant(2) | -0.0499 0.0450 Constant(3) | -0.4221 0.1781 AR{1}(1,1) | 0.1241 0.0762 AR{1}(2,1) | -0.0219 0.0413 AR{1}(3,1) | -0.1586 0.1632 AR{1}(1,2) | -0.4809 0.1536 AR{1}(2,2) | 0.4716 0.0831 AR{1}(3,2) | -1.4368 0.3287 AR{1}(1,3) | 0.1005 0.0390 AR{1}(2,3) | 0.0391 0.0211 AR{1}(3,3) | -0.2905 0.0835 AR{2}(1,1) | 0.3236 0.0868 AR{2}(2,1) | 0.0913 0.0469 AR{2}(3,1) | 0.3403 0.1857 AR{2}(1,2) | -0.0503 0.1647 AR{2}(2,2) | 0.2414 0.0891 AR{2}(3,2) | -0.2968 0.3526 AR{2}(1,3) | 0.0450 0.0413 AR{2}(2,3) | 0.0536 0.0223 AR{2}(3,3) | -0.3117 0.0883 AR{3}(1,1) | 0.4272 0.0860 AR{3}(2,1) | -0.0389 0.0465 AR{3}(3,1) | 0.2848 0.1841 AR{3}(1,2) | 0.2738 0.1620 AR{3}(2,2) | 0.0552 0.0876 AR{3}(3,2) | -0.7401 0.3466 AR{3}(1,3) | 0.0523 0.0428 AR{3}(2,3) | 0.0008 0.0232 AR{3}(3,3) | 0.0028 0.0917 AR{4}(1,1) | 0.0167 0.0901 AR{4}(2,1) | 0.0285 0.0488 AR{4}(3,1) | -0.0690 0.1928 AR{4}(1,2) | -0.1830 0.1520 AR{4}(2,2) | -0.1795 0.0822 AR{4}(3,2) | 0.1494 0.3253 AR{4}(1,3) | 0.0067 0.0395 AR{4}(2,3) | 0.0088 0.0214 AR{4}(3,3) | -0.1372 0.0845 Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.3028 -0.0217 0.1579 | (0.0321) (0.0124) (0.0499) DUNRATE | -0.0217 0.0887 -0.1435 | (0.0124) (0.0094) (0.0283) DFEDFUNDS | 0.1579 -0.1435 1.3872 | (0.0499) (0.0283) (0.1470)
Обобщите апостериорное распределение; сравните каждый тип дисплея оценки.
summarize(PosteriorMdl); % The default is 'table'.
| Mean Std ------------------------------- Constant(1) | 0.1007 0.0832 Constant(2) | -0.0499 0.0450 Constant(3) | -0.4221 0.1781 AR{1}(1,1) | 0.1241 0.0762 AR{1}(2,1) | -0.0219 0.0413 AR{1}(3,1) | -0.1586 0.1632 AR{1}(1,2) | -0.4809 0.1536 AR{1}(2,2) | 0.4716 0.0831 AR{1}(3,2) | -1.4368 0.3287 AR{1}(1,3) | 0.1005 0.0390 AR{1}(2,3) | 0.0391 0.0211 AR{1}(3,3) | -0.2905 0.0835 AR{2}(1,1) | 0.3236 0.0868 AR{2}(2,1) | 0.0913 0.0469 AR{2}(3,1) | 0.3403 0.1857 AR{2}(1,2) | -0.0503 0.1647 AR{2}(2,2) | 0.2414 0.0891 AR{2}(3,2) | -0.2968 0.3526 AR{2}(1,3) | 0.0450 0.0413 AR{2}(2,3) | 0.0536 0.0223 AR{2}(3,3) | -0.3117 0.0883 AR{3}(1,1) | 0.4272 0.0860 AR{3}(2,1) | -0.0389 0.0465 AR{3}(3,1) | 0.2848 0.1841 AR{3}(1,2) | 0.2738 0.1620 AR{3}(2,2) | 0.0552 0.0876 AR{3}(3,2) | -0.7401 0.3466 AR{3}(1,3) | 0.0523 0.0428 AR{3}(2,3) | 0.0008 0.0232 AR{3}(3,3) | 0.0028 0.0917 AR{4}(1,1) | 0.0167 0.0901 AR{4}(2,1) | 0.0285 0.0488 AR{4}(3,1) | -0.0690 0.1928 AR{4}(1,2) | -0.1830 0.1520 AR{4}(2,2) | -0.1795 0.0822 AR{4}(3,2) | 0.1494 0.3253 AR{4}(1,3) | 0.0067 0.0395 AR{4}(2,3) | 0.0088 0.0214 AR{4}(3,3) | -0.1372 0.0845 Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.3028 -0.0217 0.1579 | (0.0321) (0.0124) (0.0499) DUNRATE | -0.0217 0.0887 -0.1435 | (0.0124) (0.0094) (0.0283) DFEDFUNDS | 0.1579 -0.1435 1.3872 | (0.0499) (0.0283) (0.1470)
Значением по умолчанию является то же табличное отображение по умолчанию что estimate
печать.
summarize(PosteriorMdl,'equation');
VAR Equations | INFL(-1) DUNRATE(-1) DFEDFUNDS(-1) INFL(-2) DUNRATE(-2) DFEDFUNDS(-2) INFL(-3) DUNRATE(-3) DFEDFUNDS(-3) INFL(-4) DUNRATE(-4) DFEDFUNDS(-4) Constant ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ INFL | 0.1241 -0.4809 0.1005 0.3236 -0.0503 0.0450 0.4272 0.2738 0.0523 0.0167 -0.1830 0.0067 0.1007 | (0.0762) (0.1536) (0.0390) (0.0868) (0.1647) (0.0413) (0.0860) (0.1620) (0.0428) (0.0901) (0.1520) (0.0395) (0.0832) DUNRATE | -0.0219 0.4716 0.0391 0.0913 0.2414 0.0536 -0.0389 0.0552 0.0008 0.0285 -0.1795 0.0088 -0.0499 | (0.0413) (0.0831) (0.0211) (0.0469) (0.0891) (0.0223) (0.0465) (0.0876) (0.0232) (0.0488) (0.0822) (0.0214) (0.0450) DFEDFUNDS | -0.1586 -1.4368 -0.2905 0.3403 -0.2968 -0.3117 0.2848 -0.7401 0.0028 -0.0690 0.1494 -0.1372 -0.4221 | (0.1632) (0.3287) (0.0835) (0.1857) (0.3526) (0.0883) (0.1841) (0.3466) (0.0917) (0.1928) (0.3253) (0.0845) (0.1781) Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.3028 -0.0217 0.1579 | (0.0321) (0.0124) (0.0499) DUNRATE | -0.0217 0.0887 -0.1435 | (0.0124) (0.0094) (0.0283) DFEDFUNDS | 0.1579 -0.1435 1.3872 | (0.0499) (0.0283) (0.1470)
В 'equation'
отображение, строки соответствуют уравнениям ответа в системе VAR, и столбцы соответствуют изолированным переменным отклика в рамках уравнений. Элементы в таблице соответствуют следующим средним значениям соответствующего коэффициента; под каждым средним значением в круглых скобках стандартное отклонение следующего.
summarize(PosteriorMdl,'matrix');
VAR Coefficient Matrix of Lag 1 | INFL(-1) DUNRATE(-1) DFEDFUNDS(-1) -------------------------------------------------- INFL | 0.1241 -0.4809 0.1005 | (0.0762) (0.1536) (0.0390) DUNRATE | -0.0219 0.4716 0.0391 | (0.0413) (0.0831) (0.0211) DFEDFUNDS | -0.1586 -1.4368 -0.2905 | (0.1632) (0.3287) (0.0835) VAR Coefficient Matrix of Lag 2 | INFL(-2) DUNRATE(-2) DFEDFUNDS(-2) -------------------------------------------------- INFL | 0.3236 -0.0503 0.0450 | (0.0868) (0.1647) (0.0413) DUNRATE | 0.0913 0.2414 0.0536 | (0.0469) (0.0891) (0.0223) DFEDFUNDS | 0.3403 -0.2968 -0.3117 | (0.1857) (0.3526) (0.0883) VAR Coefficient Matrix of Lag 3 | INFL(-3) DUNRATE(-3) DFEDFUNDS(-3) -------------------------------------------------- INFL | 0.4272 0.2738 0.0523 | (0.0860) (0.1620) (0.0428) DUNRATE | -0.0389 0.0552 0.0008 | (0.0465) (0.0876) (0.0232) DFEDFUNDS | 0.2848 -0.7401 0.0028 | (0.1841) (0.3466) (0.0917) VAR Coefficient Matrix of Lag 4 | INFL(-4) DUNRATE(-4) DFEDFUNDS(-4) -------------------------------------------------- INFL | 0.0167 -0.1830 0.0067 | (0.0901) (0.1520) (0.0395) DUNRATE | 0.0285 -0.1795 0.0088 | (0.0488) (0.0822) (0.0214) DFEDFUNDS | -0.0690 0.1494 -0.1372 | (0.1928) (0.3253) (0.0845) Constant Term INFL | 0.1007 | (0.0832) DUNRATE | -0.0499 | 0.0450 DFEDFUNDS | -0.4221 | 0.1781 Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.3028 -0.0217 0.1579 | (0.0321) (0.0124) (0.0499) DUNRATE | -0.0217 0.0887 -0.1435 | (0.0124) (0.0094) (0.0283) DFEDFUNDS | 0.1579 -0.1435 1.3872 | (0.0499) (0.0283) (0.1470)
В 'matrix'
отобразитесь, каждая таблица содержит следующее среднее значение соответствующей матрицы коэффициентов. Под каждым средним значением в круглых скобках следующее стандартное отклонение.
Полагайте, что 3-D модель VAR (4) Смотрит Миннесоту Предшествующие Предположения Среди Моделей. Примите, что параметры следуют полусопряженной предшествующей модели.
Загрузите США макроэкономический набор данных. Вычислите уровень инфляции, стабилизируйте показатели безработицы и ставки по федеральным фондам, и удалите отсутствующие значения.
load Data_USEconModel seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; DataTable.INFL = 100*[NaN; price2ret(DataTable.CPIAUCSL)]; DataTable.DUNRATE = [NaN; diff(DataTable.UNRATE)]; DataTable.DFEDFUNDS = [NaN; diff(DataTable.FEDFUNDS)]; seriesnames(2:3) = "D" + seriesnames(2:3); rmDataTable = rmmissing(DataTable);
Создайте полусопряженный Байесов VAR (4) предшествующая модель для трех рядов ответа. Задайте имена переменной отклика и подавите отображение оценки.
numseries = numel(seriesnames); numlags = 4; PriorMdl = bayesvarm(numseries,numlags,'Model','semiconjugate',... 'SeriesNames',seriesnames);
Оцените апостериорное распределение. Подавите отображение оценки.
PosteriorMdl = estimate(PriorMdl,rmDataTable{:,seriesnames},'Display','off');
Поскольку следующая из полусопряженной модели аналитически тяжела, PosteriorMdl
empiricalbvarm
объект модели, хранящий ничьи от сэмплера Гиббса.
Обобщите апостериорное распределение; возвратите сводные данные оценки.
Summary = summarize(PosteriorMdl);
| Mean Std ------------------------------- Constant(1) | 0.1830 0.0718 Constant(2) | -0.0808 0.0413 Constant(3) | -0.0161 0.1309 AR{1}(1,1) | 0.2246 0.0650 AR{1}(2,1) | -0.0263 0.0340 AR{1}(3,1) | -0.0263 0.0775 AR{1}(1,2) | -0.0837 0.0824 AR{1}(2,2) | 0.3665 0.0740 AR{1}(3,2) | -0.1283 0.0948 AR{1}(1,3) | 0.1362 0.0323 AR{1}(2,3) | 0.0154 0.0198 AR{1}(3,3) | -0.0538 0.0685 AR{2}(1,1) | 0.2518 0.0700 AR{2}(2,1) | 0.0928 0.0352 AR{2}(3,1) | 0.0373 0.0628 AR{2}(1,2) | -0.0097 0.0632 AR{2}(2,2) | 0.1657 0.0709 AR{2}(3,2) | -0.0254 0.0688 AR{2}(1,3) | 0.0329 0.0308 AR{2}(2,3) | 0.0341 0.0199 AR{2}(3,3) | -0.1451 0.0637 AR{3}(1,1) | 0.2895 0.0665 AR{3}(2,1) | 0.0013 0.0332 AR{3}(3,1) | -0.0036 0.0530 AR{3}(1,2) | 0.0322 0.0538 AR{3}(2,2) | -0.0150 0.0667 AR{3}(3,2) | -0.0369 0.0568 AR{3}(1,3) | 0.0368 0.0298 AR{3}(2,3) | -0.0083 0.0194 AR{3}(3,3) | 0.1516 0.0603 AR{4}(1,1) | 0.0452 0.0644 AR{4}(2,1) | 0.0225 0.0325 AR{4}(3,1) | -0.0097 0.0470 AR{4}(1,2) | -0.0218 0.0468 AR{4}(2,2) | -0.1125 0.0611 AR{4}(3,2) | 0.0013 0.0491 AR{4}(1,3) | 0.0180 0.0273 AR{4}(2,3) | 0.0084 0.0179 AR{4}(3,3) | -0.0815 0.0594 Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.2983 -0.0219 0.1750 | (0.0307) (0.0121) (0.0500) DUNRATE | -0.0219 0.0890 -0.1495 | (0.0121) (0.0093) (0.0290) DFEDFUNDS | 0.1750 -0.1495 1.4730 | (0.0500) (0.0290) (0.1514)
Summary
Summary = struct with fields:
Description: "3-Dimensional VAR(4) Model"
NumEstimatedParameters: 39
Table: [39x2 table]
CoeffMap: [39x1 string]
CoeffMean: [39x1 double]
CoeffStd: [39x1 double]
SigmaMean: [3x3 double]
SigmaStd: [3x3 double]
Сводные данные являются массивом структур полей, содержащих следующую информацию об оценке. Например, CoeffMap
поле содержит список содействующих имен. Порядок имен соответствует порядку все вводы и выводы вектора коэффициентов. Отобразите CoeffMap
.
Summary.CoeffMap
ans = 39x1 string
"AR{1}(1,1)"
"AR{1}(1,2)"
"AR{1}(1,3)"
"AR{2}(1,1)"
"AR{2}(1,2)"
"AR{2}(1,3)"
"AR{3}(1,1)"
"AR{3}(1,2)"
"AR{3}(1,3)"
"AR{4}(1,1)"
"AR{4}(1,2)"
"AR{4}(1,3)"
"Constant(1)"
"AR{1}(2,1)"
"AR{1}(2,2)"
"AR{1}(2,3)"
"AR{2}(2,1)"
"AR{2}(2,2)"
"AR{2}(2,3)"
"AR{3}(2,1)"
"AR{3}(2,2)"
"AR{3}(2,3)"
"AR{4}(2,1)"
"AR{4}(2,2)"
"AR{4}(2,3)"
"Constant(2)"
"AR{1}(3,1)"
"AR{1}(3,2)"
"AR{1}(3,3)"
"AR{2}(3,1)"
⋮
Mdl
— Предшествующая или следующая модель Bayesian VARconjugatebvarm
объект модели | semiconjugatebvarm
объект модели | diffusebvarm
объект модели | normalbvarm
объект модели | empiricalbvarm
объект моделиПредшествующая или следующая модель Bayesian VAR в виде объекта модели в этой таблице.
Объект модели | Описание |
---|---|
conjugatebvarm | Зависимый, матричная нормальная инверсия Уишарт спрягают модель, возвращенную bayesvarm , conjugatebvarm , или estimate |
semiconjugatebvarm | Независимый, нормальный обратный Уишарт полуспрягает предшествующую модель, возвращенную bayesvarm или semiconjugatebvarm |
diffusebvarm | Рассейте предшествующую модель, возвращенную bayesvarm или diffusebvarm |
empiricalbvarm | Предшествующая или следующая модель, охарактеризованная случайными ничьими от соответствующих распределений, возвращенных empiricalbvarm или estimate |
display
— Стиль отображения сводных данных распределения'table'
(значение по умолчанию) | 'off'
| 'equation'
| 'matrix'
Стиль отображения сводных данных распределения в виде значения в этой таблице.
Значение | Описание |
---|---|
'off' | summarize не распечатывает к командной строке. |
'table' |
|
'equation' |
|
'matrix' |
|
Типы данных: char |
string
Summary
— Статистика сводных данных распределенияСтатистика сводных данных распределения, возвращенная как массив структур, содержащий эти поля:
Поле | Описание | Тип данных |
---|---|---|
Description | Описание модели | скаляр строки |
NumEstimatedParameters | Количество коэффициентов | числовой скаляр |
Table | Таблица содействующих средних значений распределения и стандартных отклонений; каждая строка соответствует коэффициенту, и каждый столбец соответствует статистической величине | таблица |
CoeffMap | Содействующие имена | вектор строки |
CoeffMean | Содействующие средние значения распределения | числовой вектор, строки соответствуют CoeffMap |
CoeffStd | Содействующие стандартные отклонения распределения | числовой вектор, строки соответствуют CoeffMap |
SigmaMean | Инновационное распределение ковариации означает матрицу | числовая матрица, строки и столбцы соответствуют уравнениям ответа |
SigmaStd | Инновационная матрица стандартного отклонения распределения ковариации | числовая матрица, строки и столбцы соответствуют уравнениям ответа |
Bayesian VAR model обрабатывает все коэффициенты и инновационную ковариационную матрицу как случайные переменные в m - размерная, стационарная модель VARX(p). Модель имеет одну из трех форм, описанных в этой таблице.
Модель | Уравнение |
---|---|
VAR уменьшаемой формы (p) в обозначении разностного уравнения |
|
Многомерная регрессия |
|
Матричная регрессия |
|
В течение каждого раза t = 1..., T:
yt является m - размерный наблюдаемый вектор отклика, где m = numseries
.
Φ1, …, Φp является m-by-m содействующие матрицы AR задержек 1 через p, где p = numlags
.
c является m-by-1 вектор из констант модели если IncludeConstant
true
.
δ является m-by-1 вектор из линейных коэффициентов тренда времени если IncludeTrend
true
.
Β m-by-r матрица коэффициентов регрессии r-by-1 вектор из наблюдаемых внешних предикторов x t, где r = NumPredictors
. Все переменные предикторы появляются в каждом уравнении.
который является 1 на (mp + r + 2) вектор, и Z t является m-by-m матрица диагонали блока (mp + r + 2)
где 0z является 1 на (mp + r + 2) нулевой вектор.
, который является (mp + r + 2)-by-m случайная матрица коэффициентов и m (mp + r + 2)-by-1 векторный λ = vec (Λ).
εt является m-by-1 вектор из случайных, последовательно некоррелированых, многомерных нормальных инноваций с нулевым вектором для среднего значения и m-by-m матрица Σ для ковариации. Это предположение подразумевает, что вероятность данных
где f является m - размерная многомерная нормальная плотность со средним z t Λ и ковариация Σ, оцененный в y t.
Прежде, чем рассмотреть данные, вы налагаете предположение joint prior distribution на (Λ,Σ), которым управляет распределение π (Λ,Σ). В Байесовом анализе распределение параметров обновляется с информацией о параметрах, полученных из вероятности данных. Результатом является π joint posterior distribution (Λ,Σ | Y, X, Y 0), где:
Y является T-by-m матрица, содержащая целый ряд ответа {y t}, t = 1, …, T.
X является T-by-m матрица, содержащая целый внешний ряд {x t}, t = 1, …, T.
Y 0 является p-by-m, матрица преддемонстрационных данных раньше инициализировала модель VAR для оценки.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.