Симулируйте Убавляет демонстрационные пути Эйлеровым приближением
[
симулирует Paths
,Times
,Z
,N
] = simByEuler(MDL
,NPeriods
)NTrials
демонстрационные пути Бэйтса двумерные модели, управляемые NBrowns
Источники броуновского движения риска и NJumps
соедините Пуассоновские процессы, представляющие прибытие важных событий по NPeriods
последовательные периоды наблюдения. Симуляция аппроксимирует стохастические процессы непрерывного времени Эйлеровым подходом.
Убавляет модели, двумерные составные модели. Каждая модель Bates состоит из двух двойных одномерных моделей.
Одна модель является геометрическим броуновским движением (gbm
) модель со стохастической функцией энергозависимости и скачками.
Эта модель обычно соответствует ценовому процессу, энергозависимостью которого (уровень отклонения) управляет вторая одномерная модель.
Другой моделью является Кокс-Инджерсолл-Росс (cir
) модель диффузии квадратного корня.
Эта модель описывает эволюцию уровня отклонения двойного процесса цены Бэйтса.
Этот механизм симуляции обеспечивает приближение дискретного времени базового обобщенного процесса непрерывного времени. Симуляция выведена непосредственно из стохастического дифференциального уравнения движения. Таким образом процесс дискретного времени приближается к истинному процессу непрерывного времени только как к DeltaTimes
нуль подходов.
[1] Deelstra, Гризельда и Фредди Делбэен. “Сходимость Дискретизированных, Стохастических (Процентная ставка) Процессы со Стохастическим Термином Дрейфа”. Прикладные Стохастические Модели и Анализ данных. 14, № 1, 1998, стр 77–84.
[2] Higham, Десмонд и Ксуеронг Мао. “Сходимость симуляций Монте-Карло, Включающих Возвращающийся среднее значение Процесс Квадратного корня”. Журнал Вычислительных Финансов 8, № 3, (2005): 35–61.
[3] Господь, Роджер, Реммерт Коеккоек и Дик Ван Дейк. “Сравнение Смещенных Схем Симуляции Стохастических Моделей Энергозависимости”. Количественные Финансы 10, № 2 (февраль 2010): 177–94.