Обнаружение маршрута на графическом процессоре при помощи houghlines Функция

В этом примере показано, как сгенерировать CUDA® MEX для функции MATLAB®, которая может обнаружить и вывести контуры маркера маршрута на изображении. Пример берет изображение RGB, как введено и использует ordfilt2 (Image Processing Toolbox), hough (Image Processing Toolbox), houghpeaks (Image Processing Toolbox) и houghlines Функции (Image Processing Toolbox), которые являются частью Image Processing Toolbox™, чтобы произвести обнаруженное маршрутом выходное изображение.

Сторонние необходимые условия

Необходимый

Этот пример генерирует MEX CUDA и имеет следующие сторонние требования.

  • CUDA включил NVIDIA® графический процессор и совместимый драйвер.

Дополнительный

Для сборок неMEX, таких как статические, динамические библиотеки или исполняемые файлы, этот пример имеет следующие дополнительные требования.

Проверьте среду графического процессора

Чтобы проверить, что компиляторы и библиотеки, необходимые для выполнения этого примера, настраиваются правильно, используйте coder.checkGpuInstall функция.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

lane_detection_houghlines Функция точки входа

lane_detection_houghlines.m функция точки входа берет изображение интенсивности, как введено и возвращает обнаруженное маршрутом изображение.

type lane_detection_houghlines
function [lines] = lane_detection_houghlines(inputImage)%#codegen

%  Copyright 2019-2021 The MathWorks, Inc.
coder.gpu.kernelfun;

% Convert RGB image to grayscale image.
grayImage = im2gray(inputImage);

% Edge detection using ordfilt2.
input = grayImage(240:end,1:end);
dom = ones(2);
minOrder = 1;
maxOrder = 4;
padopt = 'zeros';

MinImg = ordfilt2(input,minOrder,dom,padopt);
MaxImg = ordfilt2(input,maxOrder,dom,padopt);

% Edge detected output.
outImage = MaxImg - MinImg;
BW = imbinarize(outImage);

[H,T,R] = hough(BW);
P  = houghpeaks(H,20,'threshold',1);
lines = houghlines(BW,T,R,P,'FillGap',200,'MinLength',150);

Сгенерируйте MEX CUDA для lane_detection_houghlines Функция

Создайте объект настройки графического процессора кода и запустите codegen функция.

inputImage = imread('highway.png');
inputResizedImage = imresize(inputImage,[480 640]);
cfg = coder.gpuConfig('mex');
codegen -args {inputResizedImage} -config cfg lane_detection_houghlines
Code generation successful.

Запустите сгенерированный MEX CUDA

Запустите сгенерированный lane_detection_houghlines_mex с входом отображают и строят вход и обнаруженные маршрутом изображения.

[lines] = lane_detection_houghlines_mex(inputResizedImage);

% Plot images.
inputImageVGAsize = imresize(inputImage,[480 640]);
outputImage = imresize(inputImage,[480 640]);
p1  = subplot(1, 2, 1);
p2 = subplot(1, 2, 2);
imshow(inputImageVGAsize, 'Parent', p1);
imshow(outputImage, 'Parent', p2);hold on
max_len = 0;
for k = 1:length(lines)
    if ((lines(k).theta <= 60 && lines(k).theta >10)||...
            (lines(k).theta <= -10 && lines(k).theta > -50) )
        xy = [lines(k).point1; (lines(k).point2)];
        plot(xy(:,1),xy(:,2)+240,'LineWidth',2,'Color','green');
        
        % Plot beginning and end of lines.
        plot(xy(1,1),xy(1,2)+240,'x','LineWidth',2,'Color','yellow');
        plot(xy(2,1),xy(2,2)+240,'x','LineWidth',2,'Color','red');
        
        % Determine the endpoints of the longest line segment.
        len = norm(lines(k).point1 - lines(k).point2);
        if ( len > max_len)
            max_len = len;
            xy_long = xy;
        end
    end
end
title(p1, 'Input Image');
title(p2, 'Lane Detected Output Image');

Смотрите также

Функции

Объекты

Похожие темы