RegressionEnsemble Predict

Предскажите ансамбль использования ответов деревьев решений для регрессии

  • Библиотека:
  • Statistics and Machine Learning Toolbox / регрессия

Описание

Блок RegressionEnsemble Predict предсказывает ответы с помощью ансамбля деревьев решений (RegressionEnsemble, RegressionBaggedEnsemble, или CompactRegressionEnsemble).

Импортируйте обученный объект регрессии в блок путем определения имени переменной рабочей области, которая содержит объект. Входной порт x получает наблюдение (данные о предикторе), и выходной порт yfit, возвращает предсказанный ответ для наблюдения.

Порты

Входной параметр

развернуть все

Данные о предикторе в виде вектор-столбца или вектора-строки из одного наблюдения.

Зависимости

  • Переменные в x должны иметь тот же порядок как переменные предикторы, которые обучили модель, заданную Select trained machine learning model.

Типы данных: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point

Вывод

развернуть все

Предсказанный ответ, возвращенный как скаляр.

Типы данных: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean | fixed point

Параметры

развернуть все

Основной

Задайте имя переменной рабочей области, которая содержит RegressionEnsemble объект, RegressionBaggedEnsemble объект или CompactRegressionEnsemble объект.

Когда вы обучаете модель при помощи fitrensemble, следующие ограничения применяются:

  • Данные о предикторе не могут включать категориальные предикторы (logicalкатегориальный'char'Строка, или cell). Если вы снабжаете обучающими данными в таблице, предикторы должны быть числовыми (double или single). Кроме того, вы не можете использовать 'CategoricalPredictors' аргумент значения имени. Чтобы включать категориальные предикторы в модель, предварительно обработайте категориальные предикторы при помощи dummyvar прежде, чем подбирать модель.

  • Значение 'ResponseTransform' аргументом значения имени должен быть 'none' (значение по умолчанию).

  • Вы не можете использовать суррогатные разделения для древовидных слабых учеников, то есть, значения 'Surrogate' аргументом значения имени должен быть 'off' (значение по умолчанию), когда вы задаете древовидных слабых учеников при помощи templateTree функция.

Программируемое использование

Параметры блоков: TrainedLearner
Ввод: переменная рабочей области
Значения: RegressionEnsemble возразите | RegressionBaggedEnsemble возразите | CompactRegressionEnsemble объект
Значение по умолчанию: 'ensMdl'

Типы данных

Фиксированная точка операционные параметры

Задайте округляющийся режим для операций фиксированной точки. Для получения дополнительной информации смотрите Округление (Fixed-Point Designer).

Параметры блоков всегда вокруг к самому близкому представимому значению. Чтобы управлять округлением параметров блоков, введите выражение с помощью MATLAB® функция округления в поле маски.

Программируемое использование

Параметры блоков: RndMeth
Ввод: символьный вектор
Значения: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Значение по умолчанию: 'Floor'

Задайте, насыщает ли переполнение или переносится.

ДействиеОбъяснениеПовлияйте на переполнениеПример

Установите этот флажок (on).

Ваша модель имеет возможное переполнение, и вы хотите явную защиту насыщения в сгенерированном коде.

Переполнение насыщает или к минимальному или к максимальному значению, которое может представлять тип данных.

Максимальное значение, что int8 (8-битное целое число со знаком) тип данных может представлять, 127. Любой результат блочной операции, больше, чем это максимальное значение, вызывает переполнение 8-битного целого числа. С установленным флажком блок выход насыщает в 127. Точно так же блок выход насыщает в минимальном выходном значении –128.

Снимите этот флажок (off).

Вы хотите оптимизировать КПД своего сгенерированного кода.

Вы не хотите чрезмерно определять, как блок обрабатывает сигналы из области значений. Для получения дополнительной информации смотрите Ошибки Диапазона сигнала Поиска и устранения неисправностей (Simulink).

Переполнение переносится к соответствующему значению, которое может представлять тип данных.

Максимальное значение, что int8 (8-битное целое число со знаком) тип данных может представлять, 127. Любой результат блочной операции, больше, чем это максимальное значение, вызывает переполнение 8-битного целого числа. Со снятым флажком программное обеспечение интерпретирует значение порождения переполнения как int8, который может привести к непреднамеренному результату. Например, результат блока 130 (двоичный файл 1000 0010) описанный как int8 –126.

Программируемое использование

Параметры блоков: SaturateOnIntegerOverflow
Ввод: символьный вектор
Значения: 'off' | 'on'
Значение по умолчанию: 'off'

Выберите этот параметр, чтобы препятствовать тому, чтобы Fixed-Point Tool заменили тип данных, который вы задаете для блока. Для получения дополнительной информации смотрите, что Тип Выходных данных Блокировки Использования Устанавливает (Fixed-Point Designer).

Программируемое использование

Параметры блоков: LockScale
Ввод: символьный вектор
Значения: 'off' | 'on'
Значение по умолчанию: 'off'
Тип данных

Задайте тип данных для yfit выход. Тип может быть наследован, задан непосредственно или описан как объект типа данных, такой как Simulink.NumericType.

Когда вы выбираете Inherit: auto, блок использует правило, которое наследовало тип данных.

Для получения дополнительной информации о типах данных, смотрите Типы данных Управления Сигналов (Simulink).

Нажмите кнопку Show data type assistant, чтобы отобразить Data Type Assistant, который помогает вам установить атрибуты типа данных. Для получения дополнительной информации смотрите, Задают Типы данных Используя Ассистент Типа данных (Simulink).

Программируемое использование

Параметры блоков: OutDataTypeStr
Ввод: символьный вектор
Значения: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Значение по умолчанию: 'Inherit: auto'

Нижнее значение yfit область значений выхода, что Simulink® проверки.

Simulink использует минимальное значение, чтобы выполнить:

Примечание

Параметр Output minimum не насыщает или отсекает фактический сигнал yfit. Используйте блок Saturation (Simulink) вместо этого.

Программируемое использование

Параметры блоков: OutMin
Ввод: символьный вектор
Значения: '[]' | скаляр
Значение по умолчанию: '[]'

Верхнее значение yfit область значений выхода это Simulink Check.

Simulink использует максимальное значение, чтобы выполнить:

Примечание

Параметр Output maximum не насыщает или отсекает фактический сигнал yfit. Используйте блок Saturation (Simulink) вместо этого.

Программируемое использование

Параметры блоков: OutMax
Ввод: символьный вектор
Значения: '[]' | скаляр
Значение по умолчанию: '[]'

Задайте тип данных для выходных параметров от слабых учеников. Тип может быть наследован, задан непосредственно или описан как объект типа данных, такой как Simulink.NumericType.

Когда вы выбираете Inherit: auto, блок использует правило, которое наследовало тип данных.

Для получения дополнительной информации о типах данных, смотрите Типы данных Управления Сигналов (Simulink).

Нажмите кнопку Show data type assistant, чтобы отобразить Data Type Assistant, который помогает вам установить атрибуты типа данных. Для получения дополнительной информации смотрите, Задают Типы данных Используя Ассистент Типа данных (Simulink).

Программируемое использование

Параметры блоков: WeakLearnerDataTypeStr
Ввод: символьный вектор
Значения: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Значение по умолчанию: 'Inherit: auto'

Нижнее значение слабого ученика вывело область значений это Simulink Check.

Simulink использует минимальное значение, чтобы выполнить:

Примечание

Параметр Weak learner minimum не насыщает или отсекает фактические слабые выходные сигналы ученика.

Программируемое использование

Параметры блоков: WeakLearnerOutMin
Ввод: символьный вектор
Значения: '[]' | скаляр
Значение по умолчанию: '[]'

Верхнее значение слабого ученика вывело область значений это Simulink Check.

Simulink использует максимальное значение, чтобы выполнить:

Примечание

Параметр Weak learner maximum не насыщает или отсекает фактические слабые выходные сигналы ученика.

Программируемое использование

Параметры блоков: WeakLearnerOutMax
Ввод: символьный вектор
Значения: '[]' | скаляр
Значение по умолчанию: '[]'

Характеристики блока

Типы данных

Boolean | double | fixed point | half | integer | single

Прямое сквозное соединение

yes

Многомерные сигналы

no

Сигналы переменного размера

no

Обнаружение пересечения нулем

no

Альтернативная функциональность

Можно использовать блок MATLAB function с predict объектная функция ансамбля деревьев решений (RegressionEnsemble, RegressionBaggedEnsemble, или CompactRegressionEnsemble). Для примера смотрите, Предсказывают, что Класс Маркирует Using MATLAB Function Block.

При решении, использовать ли блок RegressionEnsemble Predict в библиотеке Statistics and Machine Learning Toolbox™ или блоке MATLAB function с predict функционируйте, рассмотрите следующее:

  • Если вы используете библиотечный блок Statistics and Machine Learning Toolbox, можно использовать Fixed-Point Tool (Fixed-Point Designer), чтобы преобразовать модель с плавающей точкой в фиксированную точку.

  • Поддержка массивов переменного размера должна быть включена для блока MATLAB function с predict функция.

  • Если вы используете блок MATLAB function, можно использовать функции MATLAB для предварительной обработки или последующей обработки прежде или после предсказаний в том же блоке MATLAB function.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью Simulink® Coder™.

Преобразование фиксированной точки
Спроектируйте и симулируйте системы фиксированной точки с помощью Fixed-Point Designer™.

Введенный в R2021a
Для просмотра документации необходимо авторизоваться на сайте